Comparison of nano-plate bending behaviour by Eringen nonlocal plate, Hencky bar-net and continualised nonlocal plate models

2018 ◽  
Vol 230 (3) ◽  
pp. 885-907 ◽  
Author(s):  
Y. P. Zhang ◽  
N. Challamel ◽  
C. M. Wang ◽  
H. Zhang
2019 ◽  
Vol 50 (6) ◽  
pp. 673-678
Author(s):  
Vladimir Ivanovich Lysukhin ◽  
Julian Fedotovich Yaremchuk

1986 ◽  
Author(s):  
N. SARIGUL ◽  
M. KHONSARI ◽  
K. HASSAN

2017 ◽  
Vol 25 (9) ◽  
pp. 643-650
Author(s):  
Eduardo Antonio Wink de Menezes ◽  
Laís Vasconcelos da Silva ◽  
Carlos Alberto Cimini Junior ◽  
Felipe Ferreira Luz ◽  
Sandro Campos Amico

Due to their high fatigue life, specific strength and specific stiffness in comparison with steel, carbon-fibre reinforced polymer (CFRP) cables have attracted the infrastructure industry interest in recent years, primarily for use as structural tendons. Particularly the oil and gas industry showed interest for application in offshore platform anchorage systems, because of their exceptional corrosion and creep/relaxation behaviour. In such applications, the cables need to be tensioned in service and to be bent around relatively small-diameter spools for transportation and maintenance. Therefore, their tensile and bending behaviour is a subject of great concern. The aim of this work was to perform a test program on 1 × 19 CFRP cables in two different situations: tensile loading and four-point bending loading. Finite element models were developed to simulate both conditions, including frictional contact between the cable wires. A simplified analytical model was also used to predict the cable behaviour in tension. Numerical predictions were compared to experimental data showing relatively good accuracy, unlike the verified analytical model. CFRP cables presented outstanding tensile behaviour, but bending over small radius spools could not reach the performance of steel wire ropes. Furthermore, simulation could only fairly predict bending below strains of μ1,000 μe for the external rods, beyond which the cable presented highly non-linear behaviour that could not be simulated by the numerical model.


Author(s):  
Edvin Hanken ◽  
Evelyn R. Hollingsworth ◽  
Lars S. Fagerland

For fast track pipeline projects the need for costly installation vessels and sophisticated materials for rigid pipeline water injection systems, have made flexible pipelines a competitive alternative. They can be installed with less costly construction vessels, provide a competitive lead time and a corrosion resistant compliant material. Flexible pipelines have relative high axial stiffness and low non-linear bending stiffness which is a challenge to model correctly with FE for in-place analyses of pipelines. Whilst some FE programs can model the non-linear bending behaviour of a flexible pipeline at a given pressure, current FE tools do not include the effect of increased bending resistance as the system is pressurized. Therefore, a 3D FE model in ANSYS was developed to simulate the decoupled axial and nonlinear bending behaviour of a flexible, including the bend stiffening effect for increasing pressure. A description of the model is given in this paper. It will be demonstrated how the FE model can be used to simulate the 3D nonlinear catenary behaviour of an high pressure flexible pipeline tied into a manifold during pressurization. Due to high manifold hub loads during pressurization it is essential that such a model is capable of capturing all effects during pressurization to achieve an acceptable confidence level of the system integrity. It is also described how the FE model is used for upheaval buckling design, capturing non-linearities and load history effects that can reduce the conservatism in the design.


Sign in / Sign up

Export Citation Format

Share Document