Effect of side chain length on intrahelical interactions between carboxylate- and guanidinium-containing amino acids

Amino Acids ◽  
2014 ◽  
Vol 46 (8) ◽  
pp. 1867-1883 ◽  
Author(s):  
Hsiou-Ting Kuo ◽  
Po-An Yang ◽  
Wei-Ren Wang ◽  
Hao-Chun Hsu ◽  
Cheng-Hsun Wu ◽  
...  
Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1279
Author(s):  
Dmitry Tolmachev ◽  
Natalia Lukasheva ◽  
George Mamistvalov ◽  
Mikko Karttunen

Investigation of the effect of CaCl2 salt on conformations of two anionic poly(amino acids) with different side chain lengths, poly-(α-l glutamic acid) (PGA) and poly-(α-l aspartic acid) (PASA), was performed by atomistic molecular dynamics (MD) simulations. The simulations were performed using both unbiased MD and the Hamiltonian replica exchange (HRE) method. The results show that at low CaCl2 concentration adsorption of Ca2+ ions lead to a significant chain size reduction for both PGA and PASA. With the increase in concentration, the chains sizes partially recover due to electrostatic repulsion between the adsorbed Ca2+ ions. Here, the side chain length becomes important. Due to the longer side chain and its ability to distance the charged groups with adsorbed ions from both each other and the backbone, PGA remains longer in the collapsed state as the CaCl2 concentration is increased. The analysis of the distribution of the mineral ions suggests that both poly(amino acids) should induce the formation of mineral with the same structure of the crystal cell.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1789
Author(s):  
Dmitry Tolmachev ◽  
George Mamistvalov ◽  
Natalia Lukasheva ◽  
Sergey Larin ◽  
Mikko Karttunen

We used atomistic molecular dynamics (MD) simulations to study polyelectrolyte brushes based on anionic α,L-glutamic acid and α,L-aspartic acid grafted on cellulose in the presence of divalent CaCl2 salt at different concentrations. The motivation is to search for ways to control properties such as sorption capacity and the structural response of the brush to multivalent salts. For this detailed understanding of the role of side-chain length, the chemical structure and their interplay are required. It was found that in the case of glutamic acid oligomers, the longer side chains facilitate attractive interactions with the cellulose surface, which forces the grafted chains to lie down on the surface. The additional methylene group in the side chain enables side-chain rotation, enhancing this effect. On the other hand, the shorter and more restricted side chains of aspartic acid oligomers prevent attractive interactions to a large degree and push the grafted chains away from the surface. The difference in side-chain length also leads to differences in other properties of the brush in divalent salt solutions. At a low grafting density, the longer side chains of glutamic acid allow the adsorbed cations to be spatially distributed inside the brush resulting in a charge inversion. With an increase in grafting density, the difference in the total charge of the aspartic and glutamine brushes disappears, but new structural features appear. The longer sides allow for ion bridging between the grafted chains and the cellulose surface without a significant change in main-chain conformation. This leads to the brush structure being less sensitive to changes in salt concentration.


1998 ◽  
Vol 39 (2) ◽  
pp. 302-312 ◽  
Author(s):  
Ian J. Martins ◽  
Catherine Vilchèze ◽  
B-C. Mortimer ◽  
Robert Bittman ◽  
Trevor G. Redgrave

2021 ◽  
pp. 116251
Author(s):  
M.A. Olea-Amezcua ◽  
J.E. Castellanos-Águila ◽  
H. HernÁndez-Cocoletzi ◽  
E. Ferreira ◽  
M. Trejo-Durán ◽  
...  

2019 ◽  
Vol 1 (5) ◽  
pp. 1107-1117 ◽  
Author(s):  
Elizabeth L. Melenbrink ◽  
Kristan M. Hilby ◽  
Kartik Choudhary ◽  
Sanket Samal ◽  
Negar Kazerouni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document