grafting density
Recently Published Documents


TOTAL DOCUMENTS

279
(FIVE YEARS 76)

H-INDEX

45
(FIVE YEARS 8)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zachary S. Clauss ◽  
Casia L. Wardzala ◽  
Austin E. Schlirf ◽  
Nathaniel S. Wright ◽  
Simranpreet S. Saini ◽  
...  

AbstractThe cellular glycocalyx and extracellular matrix are rich in glycoproteins and proteoglycans that play essential physical and biochemical roles in all life. Synthetic mimics of these natural bottlebrush polymers have wide applications in biomedicine, yet preparation has been challenged by their high grafting and glycosylation densities. Using one-pot dual-catalysis polymerization of glycan-bearing α-amino acid N-carboxyanhydrides, we report grafting-from glycopolypeptide brushes. The materials are chemically and conformationally tunable where backbone and sidechain lengths were precisely altered, grafting density modulated up to 100%, and glycan density and identity tuned by monomer feed ratios. The glycobrushes are composed entirely of sugars and amino acids, are non-toxic to cells, and are degradable by natural proteases. Inspired by native lipid-anchored proteoglycans, cholesterol-modified glycobrushes were displayed on the surface of live human cells. Our materials overcome long-standing challenges in glycobrush polymer synthesis and offer new opportunities to examine glycan presentation and multivalency from chemically defined scaffolds.


2021 ◽  
Author(s):  
Zully Mora-Sierra ◽  
Gopika Gopan ◽  
Roger Chang ◽  
Deborah E. Leckband ◽  
Martin Gruebele

2021 ◽  
Vol 93 (38) ◽  
pp. 13054-13062
Author(s):  
Tianle Liu ◽  
Xiaoqing Wu ◽  
Hongquan Xu ◽  
Qun Ma ◽  
Qiujiao Du ◽  
...  

Langmuir ◽  
2021 ◽  
Vol 37 (37) ◽  
pp. 11188-11193
Author(s):  
Duangruedee Khwannimit ◽  
Saimon M. Silva ◽  
Pauline E. Desroches ◽  
Anita F. Quigley ◽  
Robert M. I. Kapsa ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1789
Author(s):  
Dmitry Tolmachev ◽  
George Mamistvalov ◽  
Natalia Lukasheva ◽  
Sergey Larin ◽  
Mikko Karttunen

We used atomistic molecular dynamics (MD) simulations to study polyelectrolyte brushes based on anionic α,L-glutamic acid and α,L-aspartic acid grafted on cellulose in the presence of divalent CaCl2 salt at different concentrations. The motivation is to search for ways to control properties such as sorption capacity and the structural response of the brush to multivalent salts. For this detailed understanding of the role of side-chain length, the chemical structure and their interplay are required. It was found that in the case of glutamic acid oligomers, the longer side chains facilitate attractive interactions with the cellulose surface, which forces the grafted chains to lie down on the surface. The additional methylene group in the side chain enables side-chain rotation, enhancing this effect. On the other hand, the shorter and more restricted side chains of aspartic acid oligomers prevent attractive interactions to a large degree and push the grafted chains away from the surface. The difference in side-chain length also leads to differences in other properties of the brush in divalent salt solutions. At a low grafting density, the longer side chains of glutamic acid allow the adsorbed cations to be spatially distributed inside the brush resulting in a charge inversion. With an increase in grafting density, the difference in the total charge of the aspartic and glutamine brushes disappears, but new structural features appear. The longer sides allow for ion bridging between the grafted chains and the cellulose surface without a significant change in main-chain conformation. This leads to the brush structure being less sensitive to changes in salt concentration.


Author(s):  
Dmitry Tolmachev ◽  
George Mamistvalov ◽  
Natalia Lukasheva ◽  
Sergey Larin ◽  
Mikko Karttunen

We used atomistic molecular dynamics (MD) simulations to study polyelectrolyte brushes based on anionic α-L-glutamic acid and α-L-aspartic acid grafted on cellulose in the presence of divalent CaCl2 salt at different concentrations. The motivation is the search of the ways to control properties such as sorption capacity and the structural response of the brush to multivalent salts. For this detailed understanding of the role of side chain length, chemical structure and their interplay is required. It was found that in the case of glutamic acid oligomers, the longer side chains facilitate attractive interactions with the cellulose surface, which forces the grafted chains to lie down on the surface. The additional methylene group in the side chain enables side chain rotation enhancing this effect. On the other hand, the shorter and more restricted side chains of aspartic acid oligomers prevent attractive interactions to a large degree and push the grafted chains away from the surface. The difference in side chain length also leads to differences in other properties of the brush in divalent salt solutions. At a low grafting density, the longer side chains of glutamic acid allow the adsorbed cations to be spatially distributed inside the brush resulting in a charge inversion. With an increase in grafting density, the difference in the total charge of the aspartic and glutamine brushes disappears, but new structural features appear. The longer sides allow for ion bridging between the grafted chains and the cellulose surface without a significant change in main chain conformation. This leads to the brush structure being less sensitive to changes in salt concentration.


2021 ◽  
Author(s):  
Gregory I. Peterson ◽  
Jinkyung Noh ◽  
Min Young Ha ◽  
Sanghee Yang ◽  
Won Bo Lee ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 414
Author(s):  
Zhixuan Jia ◽  
Tejal Pawale ◽  
Guillermo I. Guerrero-García ◽  
Sid Hashemi ◽  
José A. Martínez-González ◽  
...  

Chiral nematic liquid crystals (CLCs), with a unique helix structure, have attracted immense recognition over the last few decades owing to the abundant presence in natural phenomena and their diverse applications. However, the optical properties of CLC are usually hindered by the abundance of the so-called fingerprint domains. Up to now, studies have worked on controlling the in-plane orientation of the lying helix through surface rubbing and external stimuli. It remains challenging to achieve a steady and uniform lying helical structure. Here, by varying the surface anchoring strength, a uniform lying helical structure with long-range order is achieved as thermodynamically stable state without any external support. Poly (6-(4-methoxy-azobenzene-4’-oxy) hexyl methacrylate) (PMMAZO)—a liquid crystalline polymer—is deposited onto the silicon substrate to fine-tune the surface anchoring. By changing the grafting density of PMMAZO, both pitch size and morphology of the lying helical structure can be controlled. As the grafting density increases, the enhanced titled deformation of helical structure suppresses the pitch size of CLC at the same cell thickness; as the cell thickness increases, the morphology transition from long-range order stripes to small fingerprint domains is facilitated.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1197
Author(s):  
Aristotelis P. Sgouros ◽  
Constantinos J. Revelas ◽  
Apostolos T. Lakkas ◽  
Doros N. Theodorou

We investigate single and opposing silica plates, either bare of grafted, in contact with vacuum or melt phases, using self-consistent field theory. Solid–polymer and solid–solid nonbonded interactions are described by means of a Hamaker potential, in conjunction with a ramp potential. The cohesive nonbonded interactions are described by the Sanchez-Lacombe or the Helfand free energy densities. We first build our thermodynamic reference by examining single surfaces, either bare or grafted, under various wetting conditions in terms of the corresponding contact angles, the macroscopic wetting functions (i.e., the work of cohesion, adhesion, spreading and immersion), the interfacial free energies and brush thickness. Subsequently, we derive the potential of mean force (PMF) of two approaching bare plates with melt between them, each time varying the wetting conditions. We then determine the PMF between two grafted silica plates separated by a molten polystyrene film. Allowing the grafting density and the molecular weight of grafted chains to vary between the two plates, we test how asymmetries existing in a real system could affect steric stabilization induced by the grafted chains. Additionally, we derive the PMF between two grafted surfaces in vacuum and determine how the equilibrium distance between the two grafted plates is influenced by their grafting density and the molecular weight of grafted chains. Finally, we provide design rules for the steric stabilization of opposing grafted surfaces (or fine nanoparticles) by taking account of the grafting density, the chain length of the grafted and matrix chains, and the asymmetry among the opposing surfaces.


Sign in / Sign up

Export Citation Format

Share Document