scholarly journals The application of HPLC/MS analysis with a multi-enzyme digest strategy to characterize different interferon product variants produced from Pichia pastoris

Amino Acids ◽  
2019 ◽  
Vol 51 (9) ◽  
pp. 1353-1363
Author(s):  
Yu Wang ◽  
Di Liu ◽  
Laura E. Crowell ◽  
Kerry R. Love ◽  
Shiaw-lin Wu ◽  
...  
2011 ◽  
Vol 49 (05) ◽  
Author(s):  
S Szabó ◽  
L Márk ◽  
S Kiss ◽  
É Polyák ◽  
A Kisbenedek ◽  
...  
Keyword(s):  

Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
N Fabre ◽  
E Deharo ◽  
HL Le ◽  
C Girardi ◽  
A Valentin ◽  
...  

Planta Medica ◽  
2013 ◽  
Vol 79 (10) ◽  
Author(s):  
S Dobreniecki ◽  
JR Porter
Keyword(s):  

2015 ◽  
Vol 37 (1se) ◽  
Author(s):  
Duong Long Duy ◽  
Pham Minh Vu ◽  
Nguyen Tri Nhan ◽  
Tran Linh Thuoc ◽  
Dang Thi Phuong Thao

Author(s):  
Rafid A. Abdulkareem

The main goal of the current study was cloning and expression of the human insulin gene in Pichia pastoris expression system, using genetic engineering techniques and its treatment application. Total RNA was purified from fresh normal human pancreatic tissue. RNA of good quality was chosen to obtain a first single strand cDNA. Human preproinsulin gene was amplified from cDNA strand, by using two sets of specific primers contain EcoR1 and Notl restriction sites. The amplified preproinsulin gene fragment was double digested with EcoRI and Not 1 restriction enzymes, then inserted into pPIC9K expression vector. The new pPIC9K-hpi constructive expression vector was transformed by the heat-shock method into the E.coli DH5α competent cells. pPic9k –hpi, which was propagated in the positive transformant E. coli cells, was isolated from cells and then linearised by restriction enzyme SalI, then transformed into Pichia pastoris GS115 using electroporation method. Genomic DNA of His+ transformants cell was extracted and used as a template for PCR analysis. The results showed, that the pPic9k – hpi was successfully integrated into the P. pastoris genome, for selected His+ transformants clones on the anticipated band at 330 bp, which is corresponded to the theoretical molecular size of the human insulin gene. To follow the insulin expression in transformans, Tricine–SDS gel electrophoresis and Western blot analysis were conducted. The results showed a successful expression of recombinant protein was detected by the presence of a single major band with about (5.8 KDa) on the gel. These bands correspond well with the size of human insulin with the theoretical molecular weight (5.8 KDa).


2020 ◽  
Vol 11 (4) ◽  
pp. 5059-5066
Author(s):  
Sushma B K ◽  
Raveesha H R

The present work is aimed to determine the chemical constituents in Baliospermum montanum methanolic extracts. An in vitro regenerated procedure was developed for the induction of callus from stem explant cultured on Murashige and Skoog (MS) medium fortified with various concentration and permutations of 2, 4-dichloro phenoxy acetic acid, 1-naphthalene acetic acid, 6-benzyl amino purine and gibberellic acid. FTIR & GC-MS analysis was done according to standard procedure. The quantitative estimation of β-sitosterol was done by HPLC method. Maximum fresh and dry weight of callus was estimated in the combination of GA3 (0.5 mg/L) + NAA (2 mg/L) compared to other concentration. The FTIR analysis showed various functional compounds with different characteristic peak values in the extracts. Major bioactive constituents were recognized in the GC-MS analysis. Root extract revealed the existence of 1-hexadecanol, pentanoic acid, 2-(aminooxy)- and 1-hexacosanol. Leaf extract showed the presence of propanoic acid, 2-oxo-, trimethylsilyl ester, 9,12-octadecadienoic acid (z,z)-, trimethylsilyl ester, docosane, 1,22-dibromo- and pentatriacontane. Stem and stem derived callus exhibit the presence of 1,6,3,4-dihydro-2-deoxy-beta-d-lyxo-hexopyranose, n-hexadecanoic acid and pentanoic acid, 2-(aminooxy). The methanolic extract of leaf exhibited 0.2149 % of β-sitosterol content. There were no peaks observed in the root, stem and stem derived callus. Further studies are necessary for the isolation and characterization of bioactive compounds from B. montanum.


Sign in / Sign up

Export Citation Format

Share Document