Cloning and Expression of Recombinant Human Insulin Gene in Pichia pastoris

Author(s):  
Rafid A. Abdulkareem

The main goal of the current study was cloning and expression of the human insulin gene in Pichia pastoris expression system, using genetic engineering techniques and its treatment application. Total RNA was purified from fresh normal human pancreatic tissue. RNA of good quality was chosen to obtain a first single strand cDNA. Human preproinsulin gene was amplified from cDNA strand, by using two sets of specific primers contain EcoR1 and Notl restriction sites. The amplified preproinsulin gene fragment was double digested with EcoRI and Not 1 restriction enzymes, then inserted into pPIC9K expression vector. The new pPIC9K-hpi constructive expression vector was transformed by the heat-shock method into the E.coli DH5α competent cells. pPic9k –hpi, which was propagated in the positive transformant E. coli cells, was isolated from cells and then linearised by restriction enzyme SalI, then transformed into Pichia pastoris GS115 using electroporation method. Genomic DNA of His+ transformants cell was extracted and used as a template for PCR analysis. The results showed, that the pPic9k – hpi was successfully integrated into the P. pastoris genome, for selected His+ transformants clones on the anticipated band at 330 bp, which is corresponded to the theoretical molecular size of the human insulin gene. To follow the insulin expression in transformans, Tricine–SDS gel electrophoresis and Western blot analysis were conducted. The results showed a successful expression of recombinant protein was detected by the presence of a single major band with about (5.8 KDa) on the gel. These bands correspond well with the size of human insulin with the theoretical molecular weight (5.8 KDa).

Gene Reports ◽  
2020 ◽  
Vol 21 ◽  
pp. 100900 ◽  
Author(s):  
Khadijeh Moridi ◽  
Mohammad Hemmaty ◽  
Mohammad Reza Akbari Eidgahi ◽  
Mohsen Fathi Najafi ◽  
Hosna Zare ◽  
...  

Gene ◽  
1984 ◽  
Vol 27 (2) ◽  
pp. 201-211 ◽  
Author(s):  
F. Georges ◽  
R. Brousseau ◽  
J. Michniewicz ◽  
G. Prefontaine ◽  
J. Stawinski ◽  
...  

Diabetes ◽  
1985 ◽  
Vol 34 (5) ◽  
pp. 433-439 ◽  
Author(s):  
S. Elbein ◽  
P. Rotwein ◽  
M. A. Permutt ◽  
G. I. Bell ◽  
N. Sanz ◽  
...  

1982 ◽  
Vol 10 (7) ◽  
pp. 2225-2240 ◽  
Author(s):  
Axel Ullrich ◽  
Thomas J. Dull ◽  
Alane Gray ◽  
John A. Philips ◽  
Stephan Peter

Science ◽  
1981 ◽  
Vol 213 (4512) ◽  
pp. 1117-1120 ◽  
Author(s):  
P Rotwein ◽  
R Chyn ◽  
J Chirgwin ◽  
B Cordell ◽  
H. Goodman ◽  
...  

2006 ◽  
Vol 395 (2) ◽  
pp. 295-301 ◽  
Author(s):  
Chiara Ciaccio ◽  
Alessandra Gambacurta ◽  
Giampiero DE Sanctis ◽  
Domenico Spagnolo ◽  
Christina Sakarikou ◽  
...  

A Pichia pastoris expression system has for the first time been successfully developed to produce rhEPO (recombinant human eosinophil peroxidase). The full-length rhEPO coding sequence was cloned into the pPIC9 vector in frame with the yeast α-Factor secretion signal under the transcriptional control of the AOX (acyl-CoA oxidase) promoter, and transformed into P. pastoris strain GS115. Evidence for the production of rhEPO by P. pastoris as a glycosylated dimer precursor of approx. 80 kDa was determined by SDS/PAGE and gel filtration chromatography. Recombinant hEPO undergoes proteolytic processing, similar to that in the native host, to generate two chains of approx. 50 and 20 kDa. A preliminary biochemical characterization of purified rhEPO demonstrated that the spectral and kinetic properties of the recombinant wild-type EPO are comparable with those of the native enzyme and are accompanied by oxidizing activity towards several physiological anionic substrates such as SCN−, Br− and Cl−. On the basis of the estimated Km and kcat values it is evident that the pseudohalide SCN− is the most specific substrate for rhEPO, consistent with the catalytic properties of other mammalian EPOs purified from blood.


Sign in / Sign up

Export Citation Format

Share Document