scholarly journals A modification of the ITTC57 correlation line for shallow water

2018 ◽  
Vol 24 (2) ◽  
pp. 642-657 ◽  
Author(s):  
Qingsong Zeng ◽  
Cornel Thill ◽  
Robert Hekkenberg ◽  
Erik Rotteveel
2019 ◽  
Author(s):  
Qingsong Zeng ◽  
Robert Hekkenberg ◽  
Cornel Thill

Abstract In ship model tests, a model-ship correlation line (e.g., the ITTC57 formula) is used to calculate the frictional resistance of both the ship and its scaled model. However, this line is designed for deep water and the effects of water depth is not considered. Research has been conducted to improve the correlation line in shallow water, but studies of the extremely shallow water case (depth/draft, h/T < 1.2) are rare. This study focuses on the friction of two ship types in extremely shallow water, where the ship’s boundary layer cannot develop freely. The physical details are analyzed based on the data generated with Computational Fluid Dynamics (CFD) calculations. The results show that for certain ship types at the same Reynolds number, the frictional resistance becomes smaller when the water is shallower. The geometry of the ship, in addition to the Reynolds number, becomes essential to the prediction of ship’s friction in extremely shallow water. Therefore, this scenario is different from intermediate shallow and deep water, and the prediction method should be considered separately. The data and analysis shown in this study can help to improve the understanding and prediction of ship’s frictional resistance in extremely shallow water.


2020 ◽  
Vol 649 ◽  
pp. 125-140
Author(s):  
DS Goldsworthy ◽  
BJ Saunders ◽  
JRC Parker ◽  
ES Harvey

Bioregional categorisation of the Australian marine environment is essential to conserve and manage entire ecosystems, including the biota and associated habitats. It is important that these regions are optimally positioned to effectively plan for the protection of distinct assemblages. Recent climatic variation and changes to the marine environment in Southwest Australia (SWA) have resulted in shifts in species ranges and changes to the composition of marine assemblages. The goal of this study was to determine if the current bioregionalisation of SWA accurately represents the present distribution of shallow-water reef fishes across 2000 km of its subtropical and temperate coastline. Data was collected in 2015 using diver-operated underwater stereo-video surveys from 7 regions between Port Gregory (north of Geraldton) to the east of Esperance. This study indicated that (1) the shallow-water reef fish of SWA formed 4 distinct assemblages along the coast: one Midwestern, one Central and 2 Southern Assemblages; (2) differences between these fish assemblages were primarily driven by sea surface temperature, Ecklonia radiata cover, non-E. radiata (canopy) cover, understorey algae cover, reef type and reef height; and (3) each of the 4 assemblages were characterised by a high number of short-range Australian and Western Australian endemic species. The findings from this study suggest that 4, rather than the existing 3 bioregions would more effectively capture the shallow-water reef fish assemblage patterns, with boundaries having shifted southwards likely associated with ocean warming.


2011 ◽  
Vol 181 (11) ◽  
pp. 1222 ◽  
Author(s):  
Aleksandr G. Luchinin ◽  
Aleksandr I. Khil'ko
Keyword(s):  

2012 ◽  
Vol 2 (6) ◽  
pp. 271-272
Author(s):  
Sudhir Pal Singh Rawat ◽  
◽  
Dr. Arnab Das ◽  
Dr. H.G.Virani Dr. H.G.Virani ◽  
Dr. Y.K.Somayajulu Dr. Y.K.Somayajulu

2002 ◽  
Vol 45 (3) ◽  
pp. 301-317 ◽  
Author(s):  
Andrea Mindszenty ◽  
J. Ferenc Deák ◽  
Mária Fölvári

Sign in / Sign up

Export Citation Format

Share Document