scholarly journals Robust-adaptive dynamic programming-based time-delay control of autonomous ships under stochastic disturbances using an actor-critic learning algorithm

Author(s):  
Hossein Nejatbakhsh Esfahani ◽  
Rafal Szlapczynski

AbstractThis paper proposes a hybrid robust-adaptive learning-based control scheme based on Approximate Dynamic Programming (ADP) for the tracking control of autonomous ship maneuvering. We adopt a Time-Delay Control (TDC) approach, which is known as a simple, practical, model free and roughly robust strategy, combined with an Actor-Critic Approximate Dynamic Programming (ACADP) algorithm as an adaptive part in the proposed hybrid control algorithm. Based on this integration, Actor-Critic Time-Delay Control (AC-TDC) is proposed. It offers a high-performance robust-adaptive control approach for path following of autonomous ships under deterministic and stochastic disturbances induced by the winds, waves, and ocean currents. Computer simulations have been conducted under two different conditions in terms of the deterministic and stochastic disturbances and all simulation results indicate an acceptable performance in tracking of paths for the proposed control algorithm in comparison with the conventional TDC approach.

2018 ◽  
Vol 42 (2) ◽  
pp. 177-186 ◽  
Author(s):  
Fei Yan ◽  
Yaoyao Wang ◽  
Wei Xu ◽  
Bai Chen

Cable-driven manipulators (CDM) are widely-used for their unique advantages such as light weight, low moving mass, high payload-to-weight ratio, and large reachable workspace. However, their complex dynamic character and low stiffness with flexible joints make the control design much more difficult than for traditional robot manipulators. In this paper, time delay control (TDC), which combines the proportional-integral–derivative (PID) control method and time delay estimation (TDE) technology, will be investigated to build a model-free controller for CDM. PID parameters are reduced dramatically as TDE compensates for a large proportion of unknown dynamics. To handle the problem in tuning parameters of this controller, artificial bee colony (ABC) algorithm is utilized to obtain optimal parameters of PID. Finally, simulations are conducted to verify the effectiveness of the propose controller and the tuning method.


1992 ◽  
Vol 114 (4) ◽  
pp. 544-555 ◽  
Author(s):  
K. Youcef-Toumi ◽  
S. Reddy

Time Delay Control has recently been suggested as an alternative scheme for control of systems with unknown dynamics and unpredictable disturbances. The proposed control algorithm does not require an explicit plant model nor does it depend on the estimation of specific plant parameters. Rather, it uses information in the recent past to directly estimate the unknown dynamics at any given instant, through time delay. In earlier papers, analysis and implementation of Time Delay Controller for nonlinear systems were discussed. This paper analyzes the continuous Time Delay Controller for a class of linear systems and presents necessary and sufficient conditions for control system stability. A necessary condition for stability is derived using the properties of linear time-delayed systems. This condition involves only a few of the system and controller parameters and facilitates design of the Time Delay Controller. It is proved that this necessary condition is also sufficient if the delay time is chosen to be infinitesimally small. The convergence of closed loop system error to zero for certain classes of inputs and disturbances when the system is stable is also established. It is also shown that certain approximations in the control algorithm and certain additional unmodeled dynamics render the closed loop system under continuous Time Delay Control to be not exponentially stable due to the controller poles on the imaginary axis at infinitely high frequencies. However, in digital implementation, all the signals are prefiltered by anti-aliasing filters prior to sampling. Hence, the highest frequency component is automatically limited and the issue of exponential instability is not encountered. A discussion is presented comparing Time Delay Control with Repetitive Control. It is indicated that the Time Delay Controller can perform the functions of a repetitive controller with the delay time replaced by the period of the reference input while the repetitive controller can perform the functions of Time Delay Controller for sufficiently small “period” for a certain class of linear systems. Furthermore, examples are included to illustrate the results.


Sign in / Sign up

Export Citation Format

Share Document