active mass damper
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 28)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 11 (6) ◽  
pp. 2468
Author(s):  
Ming-Hsiang Shih ◽  
Wen-Pei Sung

When high-rise buildings are shaken due to external forces, the facilities of the building can be damaged. A Tuned Mass Damper (TMD) can resolve this issue, but the seismic resistance of TMD is exhausted due to the detuning effect. The Impulsive Semi-Active Mass Damper (ISAMD) is proposed with fast coupling and decoupling at the active joint between the mass and structure to overcome the detuning effect. The seismic proof effects of a high-rise building with TMD and ISAMD were compared. The numerical analysis results indicate that: (1) the reduction ratio of the maximum roof displacement response and the mean square root of the displacement reduction ratio of the building with the ISAMD were higher than 30% and 60%, respectively; (2) the sensitivity of the efficiency index to the frequency ratio of the ISAMD was very low, and detuning did not occur in the building with the ISAMD; (3) to achieve stable seismic resistance of the ISAMD, its frequency ratio should be between 2 and 4; (4) the amount of displacement of the control mass block of the ISAMD can be reduced by enhancing the stiffness of the auxiliary spring of the ISAMD; and (5) the proposed ISAMD has a stable control effect, regardless of the earthquake distance.


Author(s):  
Yusuke KUMAGAI ◽  
Takahito YAMASHITA ◽  
Hideto SENO ◽  
Keita SATO ◽  
Yuichiro YAMAMOTO ◽  
...  

Actuators ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 66
Author(s):  
Seongkyu Chang

An active mass damper (AMD) was developed that uses a linear motor and coil spring to reduce the vertical vibration of a long-period cable-stayed bridge subjected to wind and earthquake loads. A scaled-down bridge model and AMD were fabricated, and the control effect of the AMD was investigated experimentally and analytically. The AMD was controlled via a linear quadratic Gaussian algorithm, which combines a linear quadratic regulator and Kalman filter. The dynamic properties were investigated using a 1/10 scale indoor experimental model, and the results confirmed that the measured and analytical accelerations were consistent. A vibrator was used to simulate the wind-induced vibration, and the experimental and analytical results were consistent. The proposed AMD was confirmed to damp the free vibration and harmonic load and increase the damping ratio of the bridge model from 0.17% to 9.2%. Finally, the control performance of the proposed AMD was numerically investigated with the scaled-down bridge model subjected to the El Centro and Imperial Valley-02 earthquakes. These results were compared with those of a TMD, and they confirmed that the proposed AMD could reduce excessive vertical vibrations of long-period cable-stayed bridges subjected to wind and earthquakes.


2020 ◽  
Vol 10 (15) ◽  
pp. 5342
Author(s):  
Pei-Ching Chen ◽  
Kai-Yi Chien

In recent years, optimal control which minimizes a cost function formulated by weighted states and control inputs has been applied to the seismic control of structures. Optimal control requires structural states which may not be available in real application; therefore, state estimation is essential, which inevitably takes additional computation time. However, time delay and state estimate error could affect the control performance. In this study, a multilayer perceptron (MLP) model and an autoregressive with exogenous inputs (ARX) model in machine learning are applied to learn the control force generated from a linear-quadratic regulator (LQR) with weighting matrices optimized by applying symbiotic organisms search algorithm. A 10-story building is adopted as a benchmark model for training and validation of the MLP and ARX models. Numerical simulation results demonstrate that the MLP and ARX models are able to emulate the LQR control force from the acceleration response directly, indicating that state estimation is not essential for optimal control implementation in real application. Finally, the machine-learning based approach is experimentally validated by conducting shake table testing in the laboratory in which the structural model is controlled by an active mass damper. The experimental results and structural control performance of the MLP and ARX models are compared with those of the LQR with a Kalman filter.


Sadhana ◽  
2020 ◽  
Vol 45 (1) ◽  
Author(s):  
Ming-Hsiang Shih ◽  
Wen-Pei Sung

Sign in / Sign up

Export Citation Format

Share Document