Topographical histology of the posterolateral corner of the knee, with special reference to laminar configurations around the popliteus tendon: a study of elderly Japanese and late-stage fetuses

2005 ◽  
Vol 10 (1) ◽  
pp. 48-55 ◽  
Author(s):  
Takeshi Minowa ◽  
Gen Murakami ◽  
Daisuke Suzuki ◽  
Eiichi Uchiyama ◽  
Hideji Kura ◽  
...  
2016 ◽  
Vol 30 (5) ◽  
pp. 538-548 ◽  
Author(s):  
Ai Kawamoto ◽  
Yohei Honkura ◽  
Ryoji Suzuki ◽  
Hiroshi Abe ◽  
Shin-ichi Abe ◽  
...  

2017 ◽  
Vol 5 (2_suppl2) ◽  
pp. 2325967117S0007
Author(s):  
Gökay Görmeli ◽  
Cemile Ayşe Görmeli ◽  
Nurzat Elmalı ◽  
Mustafa Karakaplan ◽  
Kadir Ertem ◽  
...  

Introduction: Injuries of the posterolateral corner (PLC) of the knee are rare. They are difficult to diagnose and can cause severe disability. This study presents the 20- to 70-month clinical and radiological outcomes of the anatomical reconstruction technique of LaPrade et al. Materials and methods Twenty-one patients with chronic PLC injuries underwent anatomical PLC reconstruction. The anatomical locations of the popliteus tendon, fibular collateral ligament, and popliteofibular ligament were reconstructed using a 2-graft technique. The patients were evaluated subjectively with the Tegner, Lysholm, and International Knee Documentation Committee (IKDC) subjective knee scores and objectively with the IKDC objective scores; additionally, varus stress radiographs were taken to evaluate knee stability. Results: Significant (p\0.05) improvements were observed in the postoperative Lysholm, IKDC-s, and Tegner scores compared with preoperatively. The IKDC objective subscores (lateral joint opening at 20_______________of knee extension, external rotation at 30_______________and 90_______________, and the reverse pivot-shift test) had improved significantly at the time of the final 40.9 ± 13.7-month follow-up.Lateralcompartment opening on the varus stress radiographs had decreased significantly in the postoperative period. However, there was still a significant difference compared with the uninjured knee. There was no significant improvement in the IKDC-s, Lysholm, or Tegner scores between the nine patients with isolated PLC injuries and twelve with multiligament injuries. Conclusions: Significant improvement in the objective knee stability scores and clinical outcomes with anatomical reconstruction showed that this technique can be used to treat patients with chronic PLC injured knees. However, longer-term multicentre studies and studies with larger groups comparing multiple techniques are required to determine the best treatment method for PLC injuries.


2019 ◽  
Author(s):  
Abey Thomas Babu ◽  
Santosh Sahanand ◽  
David Rajan

Abstract Background: Posterolateral corner injuries can result in persistent varus and rotary instability. Many open/ arthroscopic procedures of reconstruction/ repair have been reported, but there is a paucity of literature on clinical outcomes. We follow an all arthroscopic reconstruction technique of the popliteus sling with the use of the ‘popliteus portal’ in cases of isolated popliteus injuries (intact fibular collateral ligament). Methodds: Prospective case study of 12 patients undergoing Arthroscopic Popliteus sling reconstruction with or without associated cruciate ligament reconstruction was peformed. We report our surgical technique and clinical outcomes. Results: All our patients had good to excellent knee function at final follow up (IKDC and Tegner Scores). We did not encounter any major complications intra or post – operatively. Conclusions: In cases of Popliteus tendon injury without fibular collateral ligament injury, an ‘all – arthroscopic’ Popliteus sling reconstruction is an effective and reproducible technique of restoring posterolateral stability of the knee. The advantages of our procedure are – an ‘all – arthroscopic Technique’, avoiding damage to the meniscotibial ligaments and a more ‘anatomic’ reconstruction of the popliteus sling. Keywords: Knee, Posterolateral corner injury, popliteus, Arthroscopy, Reconstruction


2017 ◽  
Vol 5 (4_suppl4) ◽  
pp. 2325967117S0013
Author(s):  
Tobias Drenck ◽  
Christoph Domnick ◽  
Mirco Herbort ◽  
Michael Raschke ◽  
Karl-Heinz Frosch

Aims and Objectives: The posterolateral corner of the knee consists of different structures, which contribute to instability when damaged after injury or within surgery. Knowing the kinematic influences may help to improve clinical diagnostics and surgical techniques. The purpose was to determine static stabilizing effects of the posterolateral corner by dissecting stepwise all fibers and ligaments (the arcuat complex, AC) connected with the popliteus tendon (PLT) and the influence on lateral stability in the lateral collateral ligament (LCL) intact-state. Materials ans Methods: Kinematics were examined in 13 fresh-frozen human cadaveric knees using a robotic/UFS testing system with an optical tracking system. The knee kinematics were determined for 134 N anterior/posterior loads, 10 Nm valgus/varus loads and 5 Nm internal/external rotational loads in 0°, 20°, 30°, 60° and 90° of knee flexion. The posterolateral corner structures were consecutively dissected: The I.) intact knee joint, II.) with dissected posterior cruciate ligament, III.) meniscofibular/-tibial fibers, IV.) popliteofibular ligament, V.) popliteotibial fascicle (last structure of static AC), VI.) PLT and VII.) LCL. Results: The external rotation angle increased significantly by 2.6° to 7.9° (P<.05) in 0° to 90° of knee flexion and posterior tibial translation increased by 2.9 mm to 5.9 mm in 20° to 90° of knee flexion (P<.05) after cutting the AC/PLT structures (with intact LCL) in contrast to the PCL deficient knee. Differences between dissected static AC and dissected PLT were only found in 60° and 90° external rotation tests (by 2.1° and 3.1°; P<.05). In the other 28 kinematic tests, no significant differences between PLT and AC were found. Cutting the AC/PLT complex did not further decrease varus, valgus or anterior tibial stability in any flexion angle in comparison to the PCL dissected state. Conclusion: The arcuat complex is an important static stabilizer for external rotatory and posterior tibial loads of the knee, even in the lateral collateral ligament intact-state. After dissecting the major parts of the arcuat complex, the static stabilizing function of the popliteus tendon is lost. The arcuat complex has no varus-stabilizing function in the LCL-intact knee. The anatomy and function of these structures for external-rotational and posterior-translational stabilization should be considered for clinical diagnostics and when performing surgery in the posterolateral corner.


2020 ◽  
Vol 140 (12) ◽  
pp. 2003-2012 ◽  
Author(s):  
Sebastian Weiss ◽  
Matthias Krause ◽  
Karl-Heinz Frosch

Abstract Introduction Injuries of the posterolateral corner (PLC) of the knee lead to chronic lateral and external rotational instability and are often associated with PCL injuries. Numerous surgical techniques for repair and reconstruction of the PLC are established. Recently, several arthroscopic techniques have been published in order to address different degrees of PLC injuries through reconstruction of one or more functional structures. The purpose of this systematic review is to give an overview about arthroscopic techniques of posterolateral corner reconstructions and to evaluate their safeness. Materials and methods A systematic review of the literature on arthroscopic reconstructions of the posterolateral corner of the knee according to the PRISMA guidelines was performed using PubMed MEDLINE and Web of Science Databases on June 15th, 2020. Inclusion criteria were descriptions of surgical techniques to reconstruct different aspects of the posterolateral corner either strictly arthroscopically or minimally-invasive with an arthroscopic assistance. Results Arthroscopic techniques differ with regard to the extent of reconstructed units (popliteus tendon, popliteofibular ligament, lateral collateral ligament), surgical approach (transseptal, lateral) and biomechanical results (anatomic vs. non-anatomic reconstruction, restoration of rotational instability and/or lateral instability). Conclusion Different approaches to arthroscopic PLC reconstruction are presented, yet clinical results are scarce. Up to now good and excellent clinical results are reported. No major complications are reported in the literature so far.


2007 ◽  
Vol 35 (7) ◽  
pp. 1117-1122 ◽  
Author(s):  
Keith L. Markolf ◽  
Benjamin R. Graves ◽  
Susan M. Sigward ◽  
Steven R. Jackson ◽  
David R. McAllister

Background With grade 3 posterolateral injuries of the knee, reconstructions of the lateral collateral ligament, popliteus tendon, and popliteofibular ligament are commonly performed in conjunction with a posterior cruciate ligament reconstruction to restore knee stability. Hypothesis A lateral collateral ligament reconstruction, alone or with a popliteus tendon or popliteofibular ligament reconstruction, will produce normal varus rotation patterns and restore posterior cruciate ligament graft forces to normal levels in response to an applied varus moment. Study Design Controlled laboratory study. Methods Forces in the native posterior cruciate ligament were recorded for 15 intact knees during passive extension from 120° to 0° with an applied 5 N·m varus moment. The posterior cruciate ligament was removed and reconstructed with a single bundle inlay graft tensioned to restore intact knee laxity at 90°. Posterior cruciate ligament graft force, varus rotation, and tibial rotation were recorded before and after a grade 3 posterolateral corner injury. Testing was repeated with lateral collateral ligament, lateral collateral ligament plus popliteus tendon, and lateral collateral ligament plus popliteofibular ligament graft reconstructions; all grafts were tensioned to 30 N at 30° with the tibia locked in neutral rotation. Results All 3 posterolateral graft combinations rotated the tibia into slight valgus as the knee was taken through a passive range of motion. During the varus test, popliteus tendon and popliteofibular ligament reconstructions internally rotated the tibia from 1.5° (0° flexion) to approximately 12° (45° flexion). With an applied varus moment, mean varus rotations with a lateral collateral ligament graft were significantly less than those with the intact lateral collateral ligament beyond 0° flexion; mean decreases ranged from 0.8° (at 5° flexion) to 5.6° (at 120° flexion). Addition of a popliteus tendon or popliteofibular ligament graft further reduced varus rotation (compared with a lateral collateral ligament graft) beyond 25° of flexion; both grafts had equal effects. A lateral collateral ligament reconstruction alone restored posterior cruciate ligament graft forces to normal levels between 0° and 100° of flexion; lateral collateral ligament plus popliteus tendon and lateral collateral ligament plus popliteofibular ligament reconstructions reduced posterior cruciate ligament graft forces to below-normal levels—beyond 95° and 85° of flexion, respectively. Conclusions With a grade 3 posterolateral corner injury, popliteus tendon or popliteofibular ligament reconstructions are commonly performed to limit external tibial rotation; we found that they also limited varus rotation. With the graft tensioning protocols used in this study, all posterolateral graft combinations tested overconstrained varus rotation. Further studies with posterolateral reconstructions are required to better restore normal kinematics and provide more optimum load sharing between the PCL graft and posterolateral grafts. Clinical Relevance A lower level of posterolateral graft tension, perhaps applied at a different flexion angle, may be indicated to better restore normal varus stability. The clinical implications of overconstraining varus rotation are unknown.


2005 ◽  
Vol 33 (3) ◽  
pp. 360-369 ◽  
Author(s):  
Jon K. Sekiya ◽  
Marcus J. Haemmerle ◽  
Kathryne J. Stabile ◽  
Tracy M. Vogrin ◽  
Christopher D. Harner

Background Failure to address both components of a combined posterior cruciate ligament and posterolateral corner injury has been implicated as a reason for abnormal biomechanics and inferior clinical results. Hypothesis Combined double-bundle posterior cruciate ligament and posterolateral corner reconstruction restores the kinematics and in situ forces of the intact knee ligaments. Study Design Controlled laboratory study Methods Ten fresh-frozen human cadaveric knees were tested using a robotic testing system through sequential cutting and reconstructing of the posterior cruciate ligament and posterolateral corner. The knees were subjected to a 134-N posterior tibial load and a 5-N.m external tibial torque at multiple flexion angles. The double-bundle posterior cruciate ligament reconstruction was performed using Achilles and semitendinosus tendons. The posterolateral corner reconstruction consisted of reattaching the popliteus tendon to its femoral origin and reconstructing the popliteofibular ligament with a gracilis tendon. Results Under the posterior load, the combined reconstruction reduced posterior translation to within 1.2 - 1.5 mm of the intact knee. The in situ forces in the posterior cruciate ligament grafts were significantly less than those in the native posterior cruciate ligament at all angles except full extension. Conversely, the forces in the posterolateral corner grafts were significantly higher than those in the native structures at all angles. Under the external torque with the combined reconstruction, external rotation as well as in situ forces in the posterior cruciate ligament and posterolateral corner grafts were not different from the intact knee. Conclusions A combined posterior cruciate ligament and posterolateral corner reconstruction can restore intact knee kinematics at time zero. In situ forces in the intact posterior cruciate ligament and posterolateral corner were not reproduced by the reconstruction; however, the posterolateral corner reconstruction reduced the loads experienced by the posterior cruciate ligament grafts. Clinical Relevance By addressing both structures of this combined injury, this technique restores native kinematics under the applied loads at fixed flexion angles and demonstrates load sharing among the grafts creating a potentially protective effect against early failure of the posterior cruciate ligament grafts but with increased force in the posterolateral corner construct.


2020 ◽  
Vol 8 (5_suppl5) ◽  
pp. 2325967120S0009
Author(s):  
Bancha Chernchujit ◽  
Arrisna Artha ◽  
Panin Anilabol

Background: Many aspects of the posterolateral corner (PLC) of the knee have been extensively studied within the past 20 years. Quantitative anatomic and biomechanical studies have demonstrated the importance of the 3 static stabilizers of the lateral side of the knee: the fibular collateral ligament, the popliteus tendon, and the popliteofibular ligament. There are various methods of reconstruction. However, currently, there is no consensus on the preferred reconstruction technique for treating patients with chronic PLC injuries. We have developed a new reconstructive technique for PLC based on tibiofibular-based technique, similar to LaPrade, and this technique is less invasive than the previous techniques. Hypothesis: There is no difference between minimally invasive popliteus and LCL reconstruction and LaPrade’s method in restoring the posterolateral stability of knees Methods: Six paired fresh-frozen cadaveric knees were assessed in the intact state and then dissected to simulate a grade III posterolateral knee injury. By using a “Blocked randomization”, each paired knee was randomized into 2 groups (1) reconstruction via LaPrade’s method, (2) minimally invasive popliteus and LCL reconstruction. Biomechanical testing using varus stress radiographs was performed to compare knee stability between 2 groups. Results: This study included six paired knees, three males and three females. The mean age of the cadaver was 70.8 years (range 57-85 years). No difference was found in the demographic data (sex distribution, lateral opening gap of intact knee and side-to-side difference of lateral opening gap of sectioned knee) between the 2 groups. The side-to-side difference in lateral joint opening on the varus stress radiographs significantly improved after PLC reconstruction in both groups (p <0.001, p <0.001), However, there were no differences between the 2 groups in side-to-side difference of lateral opening gap after reconstruction (Mean difference=-0.05 (95%CI, -0.46 to 0.36); p- value=0.039). Conclusion: Biomechanically, minimally invasive popliteus and LCL reconstruction is equivalent to LaPrade’s technique in restoring the stability of knees in case of grade III PLC injury. Additionally, this technique is less invasive than all traditional open technique of PLC reconstruction. The minimally invasive popliteus and LCL reconstruction technique may be a treatment option for grade III PLC injury. Keywords: posterolateral corner; ligament reconstruction; popliteus tendon; lateral collateral ligament; popliteofibular ligament; knee biomechanics; minimally invasive surgery


2005 ◽  
Vol 33 (12) ◽  
pp. 1838-1845 ◽  
Author(s):  
Thomas Nau ◽  
Yan Chevalier ◽  
Nicola Hagemeister ◽  
Jacques A. deGuise ◽  
Nicolas Duval

Background Various surgical techniques to treat posterolateral knee instability have been described. To date, the recommended treatment is an anatomical form of reconstruction, in which the 3 key structures of the posterolateral corner are addressed: the lateral collateral ligament, the popliteofibular ligament, and the popliteus tendon. Hypothesis Two methods of surgical reconstruction will restore posterolateral knee instability, in terms of static laxity as well as dynamic 6 degrees of freedom kinematics, to statistically significant levels compared with the intact state. Study Design Controlled laboratory study. Methods Two surgical techniques (A and B) were used to reconstruct the posterolateral structures in 10 cadaveric knees. Static tests were performed on the intact, sectioned, and reconstructed knees at 30° and 90° of flexion for anterior-posterior laxity and external rotational laxity, as well as at 0° and 30° of flexion for varus laxity; dynamic 6 degrees of freedom kinematic testing, through a path of motion from 90° of flexion to full extension, was also performed. Results For the static varus tests, external rotation and varus laxity were significantly increased after the posterolateral structures were cut. Both reconstruction techniques restored external rotation and varus laxity to levels not significantly different from the intact state. For technique B, dynamic testing did not show any significant difference for all degrees of freedom kinematics compared with the intact state. However, for technique A, a significant internal tibial rotation was observed throughout the entire path of motion from 0° to 90° of knee flexion. Conclusions Both surgical techniques for anatomical posterolateral corner reconstruction showed good results in the static laxity tests. The anatomical reconstruction of all structures, including the popliteus tendon, resulted in an abnormal internal tibial rotation during dynamic testing.


2004 ◽  
Vol 79 (2) ◽  
pp. 72-81 ◽  
Author(s):  
Takashi Arakawa ◽  
Gen Murakami ◽  
Futoshi Nakajima ◽  
Akio Matsubara ◽  
Aiji Ohtsuka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document