Gene and primary structures of dye-linked l-proline dehydrogenase from the hyperthermophilic archaeon Thermococcus profundus show the presence of a novel heterotetrameric amino acid dehydrogenase complex

Extremophiles ◽  
2004 ◽  
Vol 8 (2) ◽  
pp. 99-108 ◽  
Author(s):  
Ryushi Kawakami ◽  
Haruhiko Sakuraba ◽  
Toshihisa Ohshima
2002 ◽  
Vol 277 (15) ◽  
pp. 12861-12867 ◽  
Author(s):  
Takenori Satomura ◽  
Ryushi Kawakami ◽  
Haruhiko Sakuraba ◽  
Toshihisa Ohshima

1986 ◽  
Vol 233 (3) ◽  
pp. 737-742 ◽  
Author(s):  
V McCully ◽  
G Burns ◽  
J R Sokatch

Branched-chain oxo acid dehydrogenase was purified from Pseudomonas aeruginosa strain PAO with the objective of resolving the complex into its subunits. The purified complex consisted of four proteins, of Mr 36,000, 42,000, 49,000 and 50,000. The complex was resolved by heat treatment into the 49,000 and 50,000-Mr proteins, which were separated by chromatography on DEAE-Sepharose. The 49,000-Mr protein was identified as the E2 subunit by its ability to catalyse transacylation with a variety of substrates, with dihydrolipoamide as the acceptor. P. aeruginosa, like P. putida, produces two lipoamide dehydrogenases. One, the 50,000-Mr protein, was identified as the specific E3 subunit of branched-chain oxo acid dehydrogenase and had many properties in common with the lipoamide dehydrogenase LPD-val of P. putida. The second lipoamide dehydrogenase had Mr 54,000 and corresponded to the lipoamide dehydrogenase LPD-glc of P. putida. Fragments of C-terminal CNBr peptides of LPD-val from P. putida and P. aeruginosa corresponded closely, with only two amino acid differences over 31 amino acids. A corresponding fragment at the C-terminal end of lipoamide dehydrogenase from Escherichia coli also showed extensive homology. All three peptides had a common segment of eight amino acids, with the sequence TIHAHPTL. This homology was not evident in any other flavoproteins in the Dayhoff data base which suggests that this sequence might be characteristic of lipoamide dehydrogenase.


1999 ◽  
Vol 45 (3) ◽  
pp. 303-309 ◽  
Author(s):  
Rumi KOBAYASHI ◽  
Yoshiharu SHIMOMURA ◽  
Taro MURAKAMI ◽  
Naoya NAKAI ◽  
Megumi OTSUKA ◽  
...  

2013 ◽  
Vol 59 (9) ◽  
pp. 598-603 ◽  
Author(s):  
Kathryn E. Oliver ◽  
Laura Silo-Suh

Chronic Pseudomonas aeruginosa infections remain the leading cause of lung dysfunction and mortality for cystic fibrosis (CF) patients. Many other bacteria inhabit the CF lung, but P. aeruginosa utilizes novel strategies that allow it to colonize this environment as the predominant bacterial pathogen. d-Amino acid dehydrogenase encoded by dadA is highly expressed by P. aeruginosa within the CF lung, and it is required for optimal production of hydrogen cyanide by some CF-adapted isolates. To better understand the increased significance of d-amino acid dehydrogenase in P. aeruginosa physiology, we characterized the contribution of the dad operon to virulence factor production. In this study, we determined that DadA is required for optimal production of pyocyanin, pyoverdine, and rhamnolipid by CF-adapted and non-CF-adapted isolates of P. aeruginosa. In addition, DadA is required for optimal production of alginate, biofilm formation, and virulence of a CF-adapted isolated of P. aeruginosa in an alfalfa seedling model of infection. Taken together, the results indicate that DadA plays a pleiotropic role in the production of important virulence factors by P. aeruginosa.


Sign in / Sign up

Export Citation Format

Share Document