Microspatial Differences in Soil Temperature Cause Phenology Change on Par with Long-Term Climate Warming in Salt Marshes

Ecosystems ◽  
2019 ◽  
Vol 23 (3) ◽  
pp. 498-510
Author(s):  
Jessica L. O’Connell ◽  
Merryl Alber ◽  
Steven C. Pennings
2021 ◽  
Vol 314 ◽  
pp. 107426
Author(s):  
Pingting Guan ◽  
Mohammad Mahamood ◽  
Yurong Yang ◽  
Donghui Wu

2021 ◽  
Author(s):  
Kristen Manies ◽  
Jennifer Harden ◽  
William Cable ◽  
Jamie Hollingsworth

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dennis Rödder ◽  
Thomas Schmitt ◽  
Patrick Gros ◽  
Werner Ulrich ◽  
Jan Christian Habel

AbstractClimate change impacts biodiversity and is driving range shifts of species and populations across the globe. To understand the effects of climate warming on biota, long-term observations of the occurrence of species and detailed knowledge on their ecology and life-history is crucial. Mountain species particularly suffer under climate warming and often respond to environmental changes by altitudinal range shifts. We assessed long-term distribution trends of mountain butterflies across the eastern Alps and calculated species’ specific annual range shifts based on field observations and species distribution models, counterbalancing the potential drawbacks of both approaches. We also compiled details on the ecology, behaviour and life-history, and the climate niche of each species assessed. We found that the highest altitudinal maxima were observed recently in the majority of cases, while the lowest altitudes of observations were recorded before 1980. Mobile and generalist species with a broad ecological amplitude tended to move uphill more than specialist and sedentary species. As main drivers we identified climatic conditions and topographic variables, such as insolation and solar irradiation. This study provides important evidence for responses of high mountain taxa to rapid climate change. Our study underlines the advantage of combining historical surveys and museum collection data with cutting-edge analyses.


2014 ◽  
Vol 20 (10) ◽  
pp. 3191-3208 ◽  
Author(s):  
Irena F. Creed ◽  
Adam T. Spargo ◽  
Julia A. Jones ◽  
Jim M. Buttle ◽  
Mary B. Adams ◽  
...  

Soil Research ◽  
2009 ◽  
Vol 47 (2) ◽  
pp. 198 ◽  
Author(s):  
Shutao Chen ◽  
Yao Huang

Studies on the CO2 and N2O emission patterns of agricultural soils under different ploughing practices may provide an insight into the potential and magnitude of CO2 and N2O mitigation in highly managed farmland soils. In this study, field measurements of soil respiration and N2O flux with different ploughing depths were performed in the 2003–04 wheat (Triticum aestivum L.), 2004 maize (Zea mays L.), and 2004–05 wheat seasons. Soil temperature and moisture were simultaneously measured. Results showed that, in each cropping season, the seasonal variation in soil respiration developed with a similar pattern for different treatments, which was primarily regulated by soil temperature. This work demonstrates that ploughing depth can influence long-term loss of carbon from soil, but this was contingent on preceding cropping types. Given the same preceding cropping practice, no significant difference in N2O emission was found among different ploughing depths in each cropping season.


2019 ◽  
Author(s):  
Hongying Yu ◽  
Zhenzhu Xu ◽  
Guangsheng Zhou ◽  
Yao Shou

Abstract. Climate change severely impacts grassland carbon cycling, especially in arid ecosystems, such as desert steppes. However, little is known about the responses of soil respiration (Rs) to different warming magnitudes and watering pulses in situ in desert steppes. To examine their effects on Rs, we conducted long-term moderate warming, short-term acute warming and watering field experiments in a desert grassland of Northern China. While experimental warming significantly reduced Rs by 32.5 % and 40.8 % under long-term and moderate and short-term and acute warming regimes, respectively, watering pulses stimulated it substantially. Warming did not change the exponential relationship between Rs and soil temperature, whereas the relationship of Rs with soil water content (SWC) was well fitted to the Gompertz function. The soil features were not significantly affected by either long-term or short-term warming regimes, respectively; however, soil organic carbon content tended to decrease with long-term climatic warming. This indicates that soil carbon release responses strongly depend on the duration and magnitude of climatic warming, which may be driven by SWC and soil temperature. The results of this study highlight the great dependence of soil carbon emission on warming regimes of different durations and the important role of precipitation pulse during growing season in assessing the terrestrial ecosystem carbon balance and cycle.


Author(s):  
O.A. Anenkhonov ◽  
◽  
D.V. Sandanov ◽  
A.A. Zverev ◽  
A.Yu. Korolyuk ◽  
...  

The long-term soil temperature monitoring in the area of more than 550 km in length within the region of Transbaikalia has been carried out. Sites for the monitoring were represented by the forest-steppe vegetation of different ecotopological and ecogeographical patterns. It was revealed that the dynamics of temperature regimens are highly synchronized reflecting the macroclimatic unity of the region. The sufficiently higher heat supply on the southerly exposed slopes comparing to northerly exposed ones was demonstrated. The distinctness between soil temperature regimens in different sites was revealed and attributed to the size of forested patches within the forest-steppe landscape, as well as discrepancies between eco-geographical features of sites along the sublatitudinal gradient. Differences between the vegetation types that occurred on the northern and southern slopes as well as between key sites scattered throughout the region were underlined. These differences are suggested to be connected with the spatial differentiation of the soil temperature. It was established that vegetation on the southern slopes is relatively more homogeneous being related to the single class Cleistogenetea squarrosae, while on the northern slopes plant communities related to three classes were developed, namely steppe class Cleistogenetea squarrosae, and two forest classes – Rhytidio-Laricetea and Vaccinio-Piceetea.


Sign in / Sign up

Export Citation Format

Share Document