scholarly journals Editor’s Message: Two new editors for Hydrogeology Journal

2015 ◽  
Vol 23 (5) ◽  
pp. 845-845
Author(s):  
Clifford Voss
Keyword(s):  
2021 ◽  
Author(s):  
Andreas Grafe ◽  
Thomas Kempka ◽  
Michael Schneider ◽  
Michael Kühn

<p>The geothermal hot water reservoir underlying the coastal township of Waiwera, northern Auckland Region, New Zealand, has been commercially utilized since 1863. The reservoir is complex in nature, as it is controlled by several coupled processes, namely flow, heat transfer and species transport. At the base of the aquifer, geothermal water of around 50°C enters. Meanwhile, freshwater percolates from the west and saltwater penetrates from the sea in the east. Understanding of the system’s dynamics is vital, as decades of unregulated, excessive abstraction resulted in the loss of previously artesian conditions. To protect the reservoir and secure the livelihoods of businesses, a Water Management Plan by The Auckland Regional Council was declared in the 1980s [1]. In attempts to describe the complex dynamics of the reservoir system with the goal of supplementing sustainable decision-making, studies in the past decades have brought forth several predictive models [2]. These models ranged from being purely data driven statistical [3] to fully coupled process simulations [1].<br><br>Our objective was to improve upon previous numerical models by introducing an updated geological model, in which the findings of a recently undertaken field campaign were integrated [4]. A static 2D Model was firstly reconstructed and verified to earlier multivariate regression model results. Furthermore, the model was expanded spatially into the third dimension. In difference to previous models, the influence of basic geologic structures and the sea water level onto the geothermal system are accounted for. Notably, the orientation of dipped horizontal layers as well as major regional faults are implemented from updated field data [4]. Additionally, the model now includes the regional topography extracted from a digital elevation model and further combined with the coastal bathymetry. Parameters relating to the hydrogeological properties of the strata along with the thermophysical properties of water with respect to depth were applied. Lastly, the catchment area and water balance of the study region are considered.<br><br>The simulation results provide new insights on the geothermal reservoir’s natural state. Numerical simulations considering coupled fluid flow as well as heat and species transport have been carried out using the in-house TRANSport Simulation Environment [5], which has been previously verified against different density-driven flow benchmarks [1]. The revised geological model improves the agreement between observations and simulations in view of the timely and spatial development of water level, temperature and species concentrations, and thus enables more reliable predictions required for water management planning.<br><br>[1] Kühn M., Stöfen H. (2005):<br>      Hydrogeology Journal, 13, 606–626,<br>      https://doi.org/10.1007/s10040-004-0377-6<br><br>[2] Kühn M., Altmannsberger C. (2016):<br>      Energy Procedia, 97, 403-410,<br>      https://doi.org/10.1016/j.egypro.2016.10.034<br><br>[3] Kühn M., Schöne T. (2017):<br>      Energy Procedia, 125, 571-579,<br>      https://doi.org/10.1016/j.egypro.2017.08.196<br><br>[4] Präg M., Becker I., Hilgers C., Walter T.R., Kühn M. (2020):<br>      Advances in Geosciences, 54, 165-171,<br>      https://doi.org/10.5194/adgeo-54-165-2020<br><br>[5] Kempka T. (2020):<br>      Adv. Geosci., 54, 67–77,<br>      https://doi.org/10.5194/adgeo-54-67-2020</p>


2020 ◽  
Author(s):  
Steffen Birk ◽  
Raoul Collenteur

<p>Arguably, the groundwater community has responded more slowly to the challenges posed by climate change than other fields of (hydrological) science. However, in recent years a strong increase in studies addressing climate change impacts on groundwater is observed, and recommendations on the methodology of such studies have been developed and discussed (e.g. Holman et al., Hydrogeology Journal, 2012). Following the common practice in other fields of climate change research, it was suggested that assessments of climate change impacts on groundwater should be based on multiple emission scenarios and a range of global and regional climate models. This scenario-based, top-down approach involves the propagation of multi-model ensembles through a model chain starting from emission scenarios to global and regional climate models to impact models such as hydrological and groundwater models. However, as the uncertainty increases at each step of the model chain, the uncertainty in the assessment of local climate change impacts and the resulting recommendations for adaptation options likely are very high and thus of little use in practice. A vulnerability-based, bottom-up approach starting from the identification and analysis of the factors that are relevant for coping with climate change in a given system, therefore, was proposed as a complementary approach (e.g. Wilby and Dessai, Weather, 2010). “Storylines” (Shephard et al., Climatic Change, 2018) that aim at representing uncertainty in physical aspects of climate change in an event-based rather than probabilistic way appear to be consistent with the latter concept. In this poster we relate these concepts of climate change research to methodological frameworks established in hydrogeological research (e.g. multi-model approaches). We present an overview of potential tools, such as trading-space-for-time, historical data analysis, sensitivity analysis, climate projections and controlled experiments, that can be used to study climate change impacts, and we discuss their role and applicability within more general methodological frameworks.</p>


2020 ◽  
Author(s):  
Alexandru Tatomir ◽  
Farzad Basirat ◽  
Chin-Fu Tsang ◽  
Yves Guglielmi ◽  
Patrick Dobson ◽  
...  

<p>Characterization of coupled hydro-mechanical (HM) processes in rock fractures is important for several key geosciences applications, such as rock slope stability, enhanced geothermal systems, and hydraulic fracturing. In-situ experimentation of these processes is challenging, and presently very few techniques exist for quantifying the parameters needed to calibrate hydromechanical models for fractured rocks at field scales. One recent field technology is the step-rate injection method for fracture in-situ properties (SIMFIP) developed by Guglielmi et al. (2014). The method measures simultaneously the time evolution of flow rate, pressure and three-dimensional deformation of the test interval at high resolution.</p><p>In June 2019 a set of SIMFIP experiments was carried out in Åre, Sweden, in the COSC-1 borehole. This is a 2.5 km deep borehole aimed primarily for scientific investigations and the fractures and intact rock sections in the borehole are well characterized. Based on the earlier characterization work, three sections were selected for SIMFIP testing: one intact rock section, one section containing a conductive fracture and one section containing a non-conductive fracture (Niemi et al., in prep.).</p><p>In this study, a coupled HM model is developed to represent the key coupled processes occurring during these SIMFIP tests. A fully-coupled vertex-centered finite volume scheme and a decoupled finite element model are implemented independently to simulate the elastic deformations and changes in pressure induced by the step-rate injection or flow back of given water volumes. Specifically, the two models are implemented in the commercial simulator COMSOL Multiphysics (sequentially coupled FEM), and the free-open source academic code DuMu<sup>X</sup> based on the models of Beck (2019). The models are used to match the pressure recorded by the high precision sensors in the test interval. A parametric study is carried out to mimic the fracture extension and step-down stages of the experiments and to investigate the influence of the key hydromechanical parameters (hydraulic aperture, permeability, storativity, and elastic moduli) on the observed data. The resulting coupled hydromechanical model will be further developed to study the three-dimensional deformation of the borehole section under the SIMFIP test.</p><p> </p><p>Beck M (2019) Conceptual approaches for the analysis of coupled hydraulic and geomechanical processes. Ph.D. Thesis, Stuttgart University</p><p>Guglielmi Y, Cappa F, Lançon H, Janowczyk JB, Rutqvist J, Tsang CF, and Wang JSY. (2014) ISRM Suggested Method for Step-Rate Injection Method for Fracture In-Situ Properties (SIMFIP): Using a 3-Components Borehole Deformation Sensor. Rock Mech Rock Eng 47:303–311. https://doi.org/10.1007/s00603-013-0517-1</p><p>Niemi, Auli, Yves Guglielmi, Patrick Dobson, Paul Cook, Chris Juhlin, Chin-Fu Tsang, Benoit Dessirier, Alexandru Tatomir, Henning Lorenz, Farzad Basirat, Bjarne Almqvist, Emil Lundberg and Jan-Erik Rosberg 'Coupled hydro-mechanical experiments on fractures in deep crystalline rock at COSC-1 – Field test procedures and first results’. Manuscript under preparation, to be submitted to Hydrogeology Journal.</p>


Sign in / Sign up

Export Citation Format

Share Document