geochemical processes
Recently Published Documents


TOTAL DOCUMENTS

528
(FIVE YEARS 126)

H-INDEX

46
(FIVE YEARS 5)

Author(s):  
Qian Zhao ◽  
Qinghai Guo ◽  
Li Luo ◽  
Ketao Yan

Geothermal waters usually have elevated tungsten concentrations, making geothermal systems important sources of tungsten in the environment. To study the transport of tungsten in hot springs to hot spring sediment, which is one of the key processes for the release of geothermally derived tungsten to the surface environment, geochemical investigations of the hot springs and their corresponding sediments in Rehai (a representative hydrothermal area in southwestern China) and systematic laboratory experiments of tungstate and polytungstate adsorption onto typical iron-bearing minerals in hot spring sediments (i.e., pyrite and goethite) were conducted. The results demonstrate that considerable tungsten concentrations (i.e., not much less than 10 µg/L), formation of polytungstates under acidic conditions, and enrichment of iron oxide minerals represented by goethite are the prerequisites for extreme enrichment of tungsten in hot spring sediments (e.g., 991 µg/g in the ZZQ spring outflow channel). The absence of any of these conditions would weaken the immobilization of aqueous tungsten and result in higher mobility of tungsten in the hot springs and its further transport downstream, possibly polluting the other natural waters in and around Rehai that serve as local drinking water sources. This study provides an insight for identifying the key geochemical processes controlling the transport and fate of undesirable elements (in this case, tungsten) in geothermal systems.


Author(s):  
Moustafa Gamal Snousy ◽  
Jianhua Wu ◽  
Fengmei Su ◽  
Ahmed Abdelhalim ◽  
Esam Ismail

2021 ◽  
Author(s):  
Chunchao Zhang ◽  
Xiangquan Li ◽  
Jianfei Ma ◽  
Zhenxing Wang ◽  
Xinwei Hou

Abstract The Changzhi Basin of China is an economically and ecologically important area with intensive human activities. To foster the sustainable development of groundwater resources and the economy, a total of 117 groundwater samples were collected in shallow and deep aquifers, including 91 2H and 18O isotope samples, to improved understanding of the natural geochemical processes and the impacts of anthropogenic activities on the groundwater chemistry. Synthetical application of the stable isotopes, Piper diagram, Gibbs diagram, ionic ratios and saturation indices to data analysis led to identification of hydrochemical zones for both aquifers from west to east of the basin. Isotopic analyses suggested that the groundwater recharge mainly comes from infiltration of rain water, hydraulic interaction between surface water and shallow groundwater, and lateral recharge from fissure water at the edge of the basin. The predominant natural geochemical processes include mineral dissolution in conjunction with the cation exchange. The excess deuterium method revealed that mineral dissolution contributed 81%–98% to the salinity of shallow groundwater and 84%–98% to the salinity of deep groundwater. Anthropogenic activities are secondary contributions to the hydrochemical evolution with fertilizer application, human waste and sewage discharges causing an increase in NO3-N content and coal mining activities affecting the ion content of Na+, Cl-, SO42-, and HCO3- in the groundwater.


2021 ◽  
Vol 906 (1) ◽  
pp. 012098
Author(s):  
Nadezhda Reutova ◽  
Andrian Seleznev ◽  
Ilia Yarmoshenko ◽  
Maria Chervyakovskaya ◽  
Maria Streletskaya

Abstract The study is aimed to apply the Pb isotope fingerprinting technique for tracing pollution of urban surface deposited sediment (USDS). USDS reflect changes in the geochemical conditions occurring in the environment. USDS samples were collected in residential areas with multistory buildings in Russian cities: Magnitogorsk, Nizhny Tagil, Tyumen, Ufa, and Chelyabinsk. Elements concentrations and stable Pb isotopic ratios were measured in the samples. The reconstruction of the initial geochemical baseline (IGB) relationship between potentially harmful element (PHE) Pb and conservative lithogenic element (CE) Fe was carried out for USDS sample populations in the cities. The IGB reconstruction divided USDS sample populations into the groups of ‘polluted’ and ‘unpolluted’ with Pb samples. Analysis of elements concentrations and Pb isotope ratios in the groups of USDS samples showed different trends in altering geochemical conditions for metals in the surveyed cities. The USDS is characterized by a decrease in the isotope ratios of 206Pb/204Pb and 208Pb/204Pb as a result of soil pollution by vehicles during the period of using leaded gasoline.


Author(s):  
Quang Khai Ha ◽  
Tien Dung Tran Ngoc ◽  
Phu Le Vo ◽  
Hong Quan Nguyen ◽  
Duc Huy Dang

2021 ◽  
Author(s):  
Kotaro Anno ◽  
George J. Moridis ◽  
Thomas A. Blasingame

Abstract The objectives of this study are to develop (a) the Julia Flow and Transport Simulator (JFTS), a serial and parallel, high performance non-isothermal, multi-phase, multi-component general simulator of flow and transport through porous/fractured media, and (b) an associated module that describes quantitatively the Equation-of-State (EOS) of the complete H2O+CH4 system by covering all combinations of phase coexistence that are possible in geologic media and including all the regions of the phase diagram that involve CH4-hydrates. The resulting simulator (hereafter referred to as the JFTS+H code) can describe all possible scenarios of hydrate occurrence, dissociation and formation/evolution and is to be used for the investigation of problems of (a) gas production from natural CH4-hydrate accumulations in geologic media, as well as for (b) the analysis of any laboratory experiments involving CH4-hydrates. As indicated by the JFTS name, this simulator is written in the Julia programming language and its parallelization is based on the Message Passing Interface (MPI) approach. The JFTS+H simulator is a fully-implicit, Jacobian-based compositional simulator that describes the accumulation, flow and transport of heat, and up to four mass components (H2O, CH4, CH4-hydrate and a water-soluble inhibitor) distributed among four possible phases (aqueous, gas, hydrate, and ice) in complex 3D geologic systems. The dissociation and formation of CH4-hydrates can be described using either an equilibrium or a kinetic model. The automatic derivate capability of Julia greatly simplifies and enhances the Jacobian computations. The MPI Interface (Blaise, 2019) is implemented in all components of the code, and the METIS library (Karypis, 2013) is used for the domain decomposition needed for the effective parallelization of the solution of the Jacobian matrix equation that is accomplished using the LIS library (Nishida, 2010) of parallel Conjugate Gradient solvers for large systems of simultaneous linear equations. The JFTS+H code can model the fluid flow, thermal and geochemical processes associated with the formation and dissociation of CH4-hydrates in geological media, either in laboratory or in natural hydrate accumulations. This code can simulate any combination of the three possible gas hydrate dissociation methods (depressurization, thermal stimulation, and inhibitor effects), and computes all associated parameters describing the system behavior. The JFTS+H results show very good agreement with solutions of standard reference problems, and of large 2D and 3D problems obtained from another well-established and widely used numerical simulator. The code exploits the speed, computational efficiency and low memory requirements of the Julia programming language. The parallel architecture of JFTS+H addresses the persistent problem of very large computational demands in serial hydrate simulations by using multiple processors to reduce the overall execution time and achieve scalable speedups. The code minimizes communications between processors and maximizes computations within the same computational node, which has important consequences (especially when coupled with the automatic derivative capabilities of Julia) on performance in the development of the Jacobian matrix. An optimal LIS solver is recommended for this type of problem after evaluating different options. This approach provides both speedup and computational efficiency results when different numbers of processors are called in the solution process. This work is believed to be the first application of Julia (a new, highly efficient language designed for demanding scientific computations) to create a simulator for flow and transport in porous media. JFTS+H is a fast, robust parallel simulator that uses the most recent scientific advances to account for all known processes in a dynamic hydrate system and works seamlessly on any computational platform (from laptop computers to workstations, to clusters and supercomputers with thousands of processors).


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2891
Author(s):  
Ignasi Herms ◽  
Jorge Jódar ◽  
Albert Soler ◽  
Luís Javier Lambán ◽  
Emilio Custodio ◽  
...  

The Port del Comte Massif (SE, Pyrenees) contains one of the most important vulnerable and strategic karst aquifers for supplying freshwater to the city of Barcelona (Spain). It is a fragile system, whose possible environmental impact is highly conditioned by land use. To improve the hydrogeological knowledge of the system, between September 2013 and October 2015, a detailed fieldwork was carried out for the revision of the geological model, the inventory of water points, and the in situ physico-chemical characterization on major elements and isotopes of up to a total of 43 springs, as well as precipitation water. This paper focuses on the characterization of the geochemical processes that allow explanation of the observed chemical variability of groundwater drained by the pristine aquifer system to determine the origin of salinity. The results show that the main process is the dissolution of calcite and dolomite, followed by gypsum and halite, and a minor cation exchange-like process. Sulfur and oxygen isotopes from dissolved sulfate in the studied springs point out a geogenic origin related to the dissolution of gypsum from Triassic and Tertiary materials, and that the contribution from anthropogenic sources, like fertilizers, is lower. Nitrate in groundwater is not an important issue, with a few localized cases related with agricultural activities. The multidisciplinary approach has allowed the development of a consistent hydrogeological conceptual model of the functioning of the aquifer system, which can be replicated in other places to understand the geogenic character of the hydrogeochemistry.


Sign in / Sign up

Export Citation Format

Share Document