scholarly journals A supersymmetric extension of the standard model with bilinear R-parity violation

2000 ◽  
Vol 12 (1) ◽  
pp. 137-160 ◽  
Author(s):  
Chao-hsi Chang ◽  
Tai-fu Feng
2008 ◽  
Vol 23 (17n20) ◽  
pp. 1266-1277 ◽  
Author(s):  
WILLEM T. H. VAN OERS

Searches for parity violation in hadronic systems started soon after the evidence for parity violation in β-decay of 60 Co was presented by Madame Chien-Shiung Wu and in π and μ decay by Leon Lederman in 1957. The early searches for parity violation in hadronic systems did not reach the sensitivity required and only after technological advances in later years was parity violation unambiguously established. Within the meson-exchange description of the strong interaction, theory and experiment meet in a set of seven weak meson-nucleon coupling constants. Even today, after almost five decades, the determination of the seven weak meson-nucleon couplings is incomplete. Parity violation in nuclear systems is rather complex due to the intricacies of QCD. More straight forward in terms of interpretation are measurements of the proton-proton parity-violating analyzing power (normalized differences in scattering yields for positive and negative helicity incident beams), for which there exist three precision experiments (at 13.6, at 45, and 221 MeV). To-date, there are better possibilities for theoretical interpretation using effective field theory approaches. The situation with regard to the measurement of the parity-violating analyzing power or asymmetry in polarized electron scattering is quite different. Although the original measurements were intended to determine the electro-weak mixing angle, with the current knowledge of the electro-weak interaction and the great precision with which electro-weak radiative corrections can be calculated, the emphasis has been to study the structure of the nucleon, and in particular the strangeness content of the nucleon. A whole series of experiments (the SAMPLE experiment at MIT-Bates, the G0 experiment and HAPPEX experiments at Jefferson Laboratory (JLab), and the PVA4 experiment at MAMI) have indicated that the strange quark contributions to the charge and magnetization distributions of the nucleon are tiny. These measurements if extrapolated to zero degrees and zero momentum transfer have also provided a factor five improvement in the knowledge of the neutral weak couplings to the quarks. Choosing appropriate kinematics in parity-violating electron-proton scattering permits nucleon structure effects on the measured analyzing power to be precisely controlled. Consequently, a precise measurement of the ‘running’ of sin 2θw or the electro-weak mixing angle has become within reach. The [Formula: see text] experiment at Jefferson Laboratory is to measure this quantity to a precision of about 4%. This will either establish conformity with the Standard Model of quarks and leptons or point to New Physics as the Standard Model must be encompassed in a more general theory required, for instance, by a convergence of the three couplings (strong, electromagnetic, and weak) to a common value at the GUT scale. The upgrade of CEBAF at Jefferson Laboratory to 12 GeV, will allow a new measurement of sin 2θW in parity-violating electron-electron scattering with an improved precision to the current better measurement (the SLAC E158 experiment) of the ‘running’ of sin 2θW away from the Z0 pole. Preliminary design studies of such an experiment show that a precision comparable to the most precise individual measurements at the Z0 pole (to about ±0.00025) can be reached. The result of this experiment will be rather complementary to the [Formula: see text] experiment in terms of sensitivity to New Physics.


2019 ◽  
Vol 69 (1) ◽  
pp. 191-217 ◽  
Author(s):  
Roger D. Carlini ◽  
Willem T.H. van Oers ◽  
Mark L. Pitt ◽  
Gregory R. Smith

This article discusses some of the history of parity-violation experiments that culminated in the Qweak experiment, which provided the first determination of the proton's weak charge [Formula: see text]. The guiding principles necessary to the success of that experiment are outlined, followed by a brief description of the Qweak experiment. Several consistent methods used to determine [Formula: see text] from the asymmetry measured in the Qweak experiment are explained in detail. The weak mixing angle sin2θw determined from [Formula: see text] is compared with results from other experiments. A description of the procedure for using the [Formula: see text] result on the proton to set TeV-scale limits for new parity-violating semileptonic physics beyond the Standard Model (BSM) is presented. By also considering atomic parity-violation results on cesium, the article shows how this result can be generalized to set limits on BSM physics, which couples to any combination of valence quark flavors. Finally, the discovery space available to future weak-charge measurements is explored.


2000 ◽  
Vol 14 (19n20) ◽  
pp. 2063-2073
Author(s):  
PROBIR ROY

After a general introduction, we discuss the motivation for supersymmetry in the light of the present status of the Standard Model of particle interactions. We then outline the MSSM which is the minimal supersymmetric extension of the latter model and focus on corresponding accelerator signals. The question of R-parity violation is raised and some collider-specific [Formula: see text] phenomenology discussed. Four salient points are made in the conclusion.


2007 ◽  
Vol 22 (12) ◽  
pp. 853-865 ◽  
Author(s):  
G. ZIINO

It is shown that both conjectures of neutrino mass and neutrino oscillation can be made really well-grounded within the Standard Model provided that one adopts a recent new version of the electroweak scheme spontaneously giving also a fundamental explanation for the so-called "maximal parity-violation" effect. A crucial role is played by the prediction of two distinct, scalar and pseudoscalar, replicas of (electron, muon, and tau) lepton numbers that could fully account for an actual non-coincidence between neutrino mass-eigenstates and gauge-eigenstates.


2015 ◽  
Vol 2015 ◽  
pp. 1-22 ◽  
Author(s):  
A. Vicente

Most extensions of the Standard Model lepton sector predict large lepton flavor violating rates. Given the promising experimental perspectives for lepton flavor violation in the next few years, this generic expectation might offer a powerful indirect probe to look for new physics. In this review we will cover several aspects of lepton flavor violation in supersymmetric models beyond the Minimal Supersymmetric Standard Model. In particular, we will concentrate on three different scenarios: high-scale and low-scale seesaw models as well as models withR-parity violation. We will see that in some cases the LFV phenomenology can have characteristic features for specific scenarios, implying that dedicated studies must be performed in order to correctly understand the phenomenology in nonminimal supersymmetric models.


1988 ◽  
Vol 03 (16) ◽  
pp. 1561-1568 ◽  
Author(s):  
ERNEST MA ◽  
GWO-GUANG WONG

A gluino can decay into a color-singlet neutral fermion [Formula: see text] by radiating off a gluon. We study this process in a minimal supersymmetric extension of the standard model. A significant branching fraction is possible depending on how much [Formula: see text] overlaps with the Higgs fermion which couples to the t quark and the mass of the t quark itself.


Sign in / Sign up

Export Citation Format

Share Document