weak charge
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 21)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Hui Jiang ◽  
Jun Ye ◽  
Peng Hu ◽  
Shengli Zhu ◽  
Yanqin Liang ◽  
...  

Co-crystallization is an efficient way of molecular crystal engineering to tune the electronic properties of organic semiconductors. In this work, we synthesized anthracene-4,8-bis(dicyanomethylene)4,8-dihydrobenzo[1,2-b:4,5-b’]-dithiophene (DTTCNQ) single crystals as a template to...


Author(s):  
Bochao Chen ◽  
Ming Liang ◽  
Qingzhao Wu ◽  
Shan Zhu ◽  
Naiqin Zhao ◽  
...  

AbstractThe development of sodium-ion (SIBs) and potassium-ion batteries (PIBs) has increased rapidly because of the abundant resources and cost-effectiveness of Na and K. Antimony (Sb) plays an important role in SIBs and PIBs because of its high theoretical capacity, proper working voltage, and low cost. However, Sb-based anodes have the drawbacks of large volume changes and weak charge transfer during the charge and discharge processes, thus leading to poor cycling and rapid capacity decay. To address such drawbacks, many strategies and a variety of Sb-based materials have been developed in recent years. This review systematically introduces the recent research progress of a variety of Sb-based anodes for SIBs and PIBs from the perspective of composition selection, preparation technologies, structural characteristics, and energy storage behaviors. Moreover, corresponding examples are presented to illustrate the advantages or disadvantages of these anodes. Finally, we summarize the challenges of the development of Sb-based materials for Na/K-ion batteries and propose potential research directions for their further development.


Author(s):  
Mengyi Zhu ◽  
Guixuan Wu ◽  
Alexander Azarov ◽  
Eduard Monakhov ◽  
Kai Tang ◽  
...  

AbstractBoron (B) and phosphorus (P) are the most problematic impurities to be removed in the production of solar-grade silicon by the metallurgical process. In this work, the distribution of B and P between CaO-(La2O3)-SiO2 slags and Si-10 mass pct Sn melt was experimentally studied. B distribution coefficient increased from 2.93 in binary CaO-SiO2 slag to 3.33 and 3.65 with 2 and 10 mass pct La2O3 additions, respectively. In the followed acid-leaching experiments, the slag-treated Si-Sn alloys exhibited higher B and P removal than that of the initial alloy without slag treatment. Molecular dynamics simulations were performed to study the effect of La2O3 addition on the slag structural and transport properties. A novel oxygen classification method was proposed to distinguish the different structural roles of La and Ca in the CaO-La2O3-SiO2 system. It was found that La3+ prefers to stay in the depolymerized region, mostly connects with 6-7 non-bridging oxygen, and requires a weak charge compensation with Ca2+. Possible silicothermic reduction was evaluated to discuss the slag chemistry and the mass transfer between slag and metal phase. A thermodynamic model was derived to theoretically study the alloying effect on impurity distribution in slag refining where positive interaction coefficient and high alloying concentration were found most beneficial to improve the impurity removal.


2021 ◽  
Vol 9 ◽  
Author(s):  
Pengqing Bi ◽  
Junzhen Ren ◽  
Shaoqing Zhang ◽  
Tao Zhang ◽  
Ye Xu ◽  
...  

Indoor organic photovoltaics (IOPVs) cells have attracted considerable attention in the past few years. Herein, two PTV-derivatives, PTVT-V and PTVT-T, were used as donor materials to fabricate IOPV cells with ITCC as the acceptor. The preferred orientation of the crystals changed from edge-on to face-on after replacing the ethylene in the backbones of PTVT-V by the thiophene in that of PTVT-T. Besides, it was found that, the energetic disorder of the PTVT-T:ITCC based system is 58 meV, which is much lower than that of PTVT-V:ITCC-based system (70 meV). The lower energetic disorder in PTVT-T:ITCC leads to an efficient charge transfer, charge transport, and thus the weak charge recombination. As a result, a PCE of 9.60% under AM 1.5 G and a PCE of 24.27% under 1,000 lux (LED 2,700 K) with a low non-radiative energy loss of 0.210 eV were obtained based on PTVT-T:ITCC blend. The results indicate that to improve the PTV-derivatives photovoltaic properties by suppressing the energetic disorder is a promising way to realize low-cost IOPV cells.


2021 ◽  
Vol 129 (2) ◽  
pp. 024301
Author(s):  
Adina R. Bechhofer ◽  
Akiko Ueda ◽  
Ankur Nipane ◽  
James T. Teherani

2021 ◽  
Vol 1 ◽  

A novel current-induced thermoelectric phenomenon, the nonlinear anomalous Ettingshausen effect, was discussed. As an example, the weak charge ordering state in an organic conductor α-(BEDT-TTF)2I3 was focused on. This effect generates a transverse heat current with rectifying characteristics, namely unidirectionality even under AC fields.


2020 ◽  
Vol 102 (6) ◽  
Author(s):  
Brendan T. Reed ◽  
Z. Jaffe ◽  
C. J. Horowitz ◽  
C. Sfienti

Sign in / Sign up

Export Citation Format

Share Document