Spatial patterns, controlling factors, and characteristics of landslides triggered by strike-slip faulting earthquakes: case study of Lefkada island, Greece

2021 ◽  
Vol 80 (5) ◽  
pp. 3747-3765 ◽  
Author(s):  
George Papathanassiou ◽  
Sotiris Valkaniotis ◽  
Athanassios Ganas
2021 ◽  
Vol 40 (2) ◽  
pp. 257-271
Author(s):  
Zhilin LIU ◽  
Yinping DING ◽  
Yuanmei JIAO ◽  
Jinliang WANG ◽  
Chengjing LIU ◽  
...  

Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 679
Author(s):  
Avi Bar-Massada

The Wildland Urban Interface (WUI) is where human settlements border or intermingle with undeveloped land, often with multiple detrimental consequences. Therefore, mapping the WUI is required in order to identify areas-at-risk. There are two main WUI mapping methods, the point-based approach and the zonal approach. Both differ in data requirements and may produce considerably different maps, yet they were never compared before. My objective was to systematically compare the point-based and the zonal-based WUI maps of California, and to test the efficacy of a new database of building locations in the context of WUI mapping. I assessed the spatial accuracy of the building database, and then compared the spatial patterns of WUI maps by estimating the effect of multiple ancillary variables on the amount of agreement between maps. I found that the building database is highly accurate and is suitable for WUI mapping. The point-based approach estimated a consistently larger WUI area across California compared to the zonal approach. The spatial correspondence between maps was low-to-moderate, and was significantly affected by building numbers and by their spatial arrangement. The discrepancy between WUI maps suggests that they are not directly comparable within and across landscapes, and that each WUI map should serve a distinct practical purpose.


2021 ◽  
pp. 1-21
Author(s):  
Samuel Tumwesigye ◽  
Matthias Vanmaercke ◽  
Lisa-Marie Hemerijckx ◽  
Alfonse Opio ◽  
Jean Poesen ◽  
...  

2021 ◽  
Vol 13 (14) ◽  
pp. 2786
Author(s):  
Roya Narimani ◽  
Changhyun Jun ◽  
Saqib Shahzad ◽  
Jeill Oh ◽  
Kyoohong Park

This paper proposes a novel hybrid method for flood susceptibility mapping using a geographic information system (ArcGIS) and satellite images based on the analytical hierarchy process (AHP). Here, the following nine multisource environmental controlling factors influencing flood susceptibility were considered for relative weight estimation in AHP: elevation, land use, slope, topographic wetness index, curvature, river distance, flow accumulation, drainage density, and rainfall. The weight for each factor was determined from AHP and analyzed to investigate critical regions that are more vulnerable to floods using the overlay weighted sum technique to integrate the nine layers. As a case study, the ArcGIS-based framework was applied in Seoul to obtain a flood susceptibility map, which was categorized into six regions (very high risk, high risk, medium risk, low risk, very low risk, and out of risk). Finally, the flood map was verified using real flood maps from the previous five years to test the model’s effectiveness. The flood map indicated that 40% of the area shows high flood risk and thus requires urgent attention, which was confirmed by the validation results. Planners and regulatory bodies can use flood maps to control and mitigate flood incidents along rivers. Even though the methodology used in this study is simple, it has a high level of accuracy and can be applied for flood mapping in most regions where the required datasets are available. This is the first study to apply high-resolution basic maps (12.5 m) to extract the nine controlling factors using only satellite images and ArcGIS to produce a suitable flood map in Seoul for better management in the near future.


Tectonics ◽  
1990 ◽  
Vol 9 (6) ◽  
pp. 1421-1431 ◽  
Author(s):  
H. Ron ◽  
A. Nur ◽  
Y. Eyal

Sign in / Sign up

Export Citation Format

Share Document