Comparison of antibiotic susceptibility of Burkholderia cepacia complex organisms when grown planktonically or as biofilm in vitro

Author(s):  
E. Caraher ◽  
G. Reynolds ◽  
P. Murphy ◽  
S. McClean ◽  
M. Callaghan
2017 ◽  
Vol 63 (10) ◽  
pp. 857-863 ◽  
Author(s):  
Maria S. Stietz ◽  
Christina Lopez ◽  
Osasumwen Osifo ◽  
Marcelo E. Tolmasky ◽  
Silvia T. Cardona

There are hundreds of essential genes in multidrug-resistant bacterial genomes, but only a few of their products are exploited as antibacterial targets. An example is the electron transfer flavoprotein (ETF), which is required for growth and viability in Burkholderia cenocepacia. Here, we evaluated ETF as an antibiotic target for Burkholderia cepacia complex (Bcc). Depletion of the bacterial ETF during infection of Caenorhabditis elegans significantly extended survival of the nematodes, proving that ETF is essential for survival of B. cenocepacia in this host model. In spite of the arrest in respiration in ETF mutants, the inhibition of etf expression did not increase the formation of persister cells, when treated with high doses of ciprofloxacin or meropenem. To test if etf translation could be inhibited by RNA interference, antisense oligonucleotides that target the etfBA operon were synthesized. One antisense oligonucleotide was effective in inhibiting etfB translation in vitro but not in vivo, highlighting the challenge of reduced membrane permeability for the design of drugs against B. cenocepacia. This work contributes to the validation of ETF of B. cenocepacia as a target for antibacterial therapy and demonstrates the utility of a C. elegans liquid killing assay to validate gene essentiality in an in vivo infection model.


2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Vidya P. Narayanaswamy ◽  
Andrew P. Duncan ◽  
John J. LiPuma ◽  
William P. Wiesmann ◽  
Shenda M. Baker ◽  
...  

ABSTRACT Burkholderia cepacia complex (Bcc) lung infections in cystic fibrosis (CF) patients are often associated with a steady decline in lung function and death. The formation of biofilms and inherent multidrug resistance are virulence factors associated with Bcc infection and contribute to increased risk of mortality in CF patients. New therapeutic strategies targeting bacterial biofilms are anticipated to enhance antibiotic penetration and facilitate resolution of infection. Poly (acetyl, arginyl) glucosamine (PAAG) is a cationic glycopolymer therapeutic being developed to directly target biofilm integrity. In this study, 13 isolates from 7 species were examined, including Burkholderia multivorans, Burkholderia cenocepacia, Burkholderia gladioli, Burkholderia dolosa, Burkholderia vietnamiensis, and B. cepacia. These isolates were selected for their resistance to standard clinical antibiotics and their ability to form biofilms in vitro. Biofilm biomass was quantitated using static tissue culture plate (TCP) biofilm methods and a minimum biofilm eradication concentration (MBEC) assay. Confocal laser scanning microscopy (CLSM) visualized biofilm removal by PAAG during treatment. Both TCP and MBEC methods demonstrated a significant dose-dependent relationship with regard to biofilm removal by 50 to 200 μg/ml PAAG following a 1-h treatment (P < 0.01). A significant reduction in biofilm thickness was observed following a 10-min treatment of Bcc biofilms with PAAG compared to that with vehicle control (P < 0.001) in TCP, MBEC, and CLSM analyses. PAAG also rapidly permeabilizes bacteria within the first 10 min of treatment. Glycopolymers, such as PAAG, are a new class of large-molecule therapeutics that support the treatment of recalcitrant Bcc biofilm.


1999 ◽  
Vol 43 (11) ◽  
pp. 2773-2775 ◽  
Author(s):  
D. J. Kenny ◽  
P. Russell ◽  
D. Rogers ◽  
S. M. Eley ◽  
R. W. Titball

ABSTRACT The in vitro antimicrobial susceptibilities of isolates ofBurkholderia mallei to 16 antibiotics were assessed and compared with the susceptibilities of Burkholderia pseudomallei and Burkholderia cepacia. The antibiotic susceptibility profile of B. mallei resembled that ofB. pseudomallei more closely than that of B. cepacia, which corresponds to their similarities in terms of biochemistry, antigenicity, and pathogenicity. Ceftazidime, imipenem, doxycycline, and ciprofloxacin were active against both B. mallei and B. pseudomallei. Gentamicin was active against B. mallei but not against B. pseudomallei. Antibiotics clinically proven to be effective in the treatment of melioidosis may therefore be effective for treating glanders.


2012 ◽  
Vol 27 (3) ◽  
Author(s):  
Lucia Corich ◽  
Linda Furlanis ◽  
Francesco Gon ◽  
Fabrizia Gionechetti ◽  
Raffaela Bressan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document