scholarly journals In vitro activity of ceftazidime, ciprofloxacin, meropenem, minocycline, tobramycin and trimethoprim/sulfamethoxazole against planktonic and sessile Burkholderia cepacia complex bacteria

2009 ◽  
Vol 64 (4) ◽  
pp. 801-809 ◽  
Author(s):  
E. Peeters ◽  
H. J. Nelis ◽  
T. Coenye
2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Dale M. Mazer ◽  
Carol Young ◽  
Linda M. Kalikin ◽  
Theodore Spilker ◽  
John J. LiPuma

ABSTRACT We tested the activities of ceftolozane-tazobactam and 13 other antimicrobial agents against 221 strains of Burkholderia cepacia complex and Burkholderia gladioli. Most strains (82%) were cultured from persons with cystic fibrosis, and most (85%) were recovered since 2011. The ceftolozane-tazobactam MIC was ≤8 μg/ml for 77% of the strains. However, the MIC range was broad (≤0.5 to >64 μg/ml; MIC50/90, 2/32 μg/ml). Significant differences in susceptibility to some antimicrobial agents were observed between species.


2010 ◽  
Vol 9 (6) ◽  
pp. 450-454 ◽  
Author(s):  
Heleen Van Acker ◽  
Elisabeth Van Snick ◽  
Hans J. Nelis ◽  
Tom Coenye

PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0203941 ◽  
Author(s):  
Simona Pollini ◽  
Vincenzo Di Pilato ◽  
Giulia Landini ◽  
Tiziana Di Maggio ◽  
Antonio Cannatelli ◽  
...  

2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S376-S376 ◽  
Author(s):  
Sandra Boyd ◽  
Karen Anderson ◽  
Valerie Albrecht ◽  
Davina Campbell ◽  
Maria S Karlsson ◽  
...  

Abstract Background Few options remain for treatment of infections caused by multi-drug resistant (MDR), carbapenemase-producing gram-negative pathogens. Cefiderocol (CFDC; Shionogi & Co. Ltd), is a novel parenteral siderophore cephalosporin that enters the bacterial cell through the iron–siderophore uptake system. Here we report on the in vitro activity of CFDC against a set of well-characterized MDR gram-negative isolates collected by the Centers for Disease Control and Prevention. Methods Minimum inhibitory concentrations (MIC) values for CFDC in iron-depleted cation-adjusted Mueller Hinton broth were determined using reference broth microdilution. Study isolates (n = 315) included Enterobacteriaceae (59%), Pseudomonas aeruginosa (19%), Acinetobacter baumannii (17%), Stenotrophomonas maltophilia (4%), and Burkholderia cepacia complex (1%). Of these, 229 (73%) were carbapenemase-producers including Ambler Class A- (37%), Class B- (29%) and Class D- type (29%) enzymes. The remaining isolates included 51 β-lactam-resistant isolates that were non-carbapenemase-producers, and 35 β-lactam-susceptible isolates. Results were interpreted using suggested CFDC breakpoints of Sensitive ≤4 μg/mL and Resistant ≥16 μg/mL. Results The majority of the isolates (90.8%) were categorized as CFDC susceptible; the percentage of isolates with a CFDC MIC ≤4 μg/mL among Enterobacteriaceae, P. aeruginosa, and A. baumannii was 87.5%, 100%, and 89%, respectively. Percentage of isolates with a CFDC MIC ≤4 μg/mL that harbored a carbapenemase of the Class A-, Class B-, and Class D-type was 91.8%, 74.8%, 98.0%, respectively. By applying suggested breakpoints, 12 isolates were categorized as intermediate and 17 as resistant. The resistant isolates included 11 NDM-, 2 OXA-23- and 4 KPC-positive organisms. Conclusion Cefiderocol showed potent activity against MDR gram-negative pathogens including Class A, B, and D carbapenemase-producing isolates. Of note, all P. aeruginosa, including Class B metallo-β-lactamase producers, were susceptible to CFDC. Disclosures All authors: No reported disclosures.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S313-S314
Author(s):  
Sonia N Rao ◽  
Sean T Nguyen ◽  
Melinda M Soriano ◽  
Jennifer M Hayes ◽  
Meredith M Hackel ◽  
...  

Abstract Background Cefiderocol (CFDC) is a new siderophore cephalosporin with potent in vitro activity against a broad range of Gram-negative (GN) pathogens, including carbapenem-nonsusceptible (Carb-NS) strains. We evaluated the in vitro activity of CFDC and comparator agents against recent clinical Carb-NS GN respiratory isolates collected from North America and Europe as part of the multi-national SIDERO-WT surveillance program. Methods A total of 2831 Carb-NS GN respiratory isolates collected from 2014 to 2017 were tested centrally (IHMA, Inc., Schaumburg, IL). Minimum inhibitory concentrations (MIC) were determined for CFDC, cefepime (FEP), ceftazidime–avibactam (CZA), ceftolozane-tazobactam (C/T), ciprofloxacin (CIP), colistin (CST), and meropenem (MEM) by broth microdilution and interpreted according to the 2018 CLSI guidelines. CFDC MICs were tested in iron-depleted cation-adjusted Mueller–Hinton broth, and interpreted according to the 2018 CLSI provisional breakpoints. Carb-NS strains were defined as MEM MIC of ≥2 µg/mL for Enterobacteriaceae (ENB) and of ≥4 µg/mL for nonfermenters (NF). Results CFDC exhibited predictable in vitro activity against 2807 clinically relevant Carb-NS GN isolates (214 ENB, 1086 A. baumannii complex, 693 P. aeruginosa, 794 S. maltophilia, and 20 Burkholderia cepacia) isolated from respiratory infections. CFDC was the most active agent against Carb-NS ENB with 97.7% susceptibility followed by 78.0% CZA, 59.4% CST, and 16.4% CIP. Against Carb-NS A. baumannii complex, CFDC demonstrated 94% susceptibility vs. 83.7% for CST. CFDC was the most active agent against Carb-NS P. aeruginosa with 99.9% susceptibility followed by 97.8% CST, 77.6% C/T, and 77.5% CZA. 99.7% of S. maltophilia and 100% of B. cepacia isolates had CFDC MICs of ≤4 µg/mL. The MIC90s of tested compounds for clinically relevant pathogens are shown in the table. Conclusion In a multinational collection of Carb-NS GN respiratory isolates, CFDC demonstrated potent in vitro activity with MIC90 of ≤4 µg/mL for all clinically relevant ENB and NF. These findings suggest that CFDC can be a potential option for the treatment of respiratory infections caused by Carb-NS ENB, A. baumannii complex, P. aeruginosa, S. maltophilia, and B. cepacia. Disclosures All authors: No reported disclosures.


Sign in / Sign up

Export Citation Format

Share Document