How do environmental characteristics at intersections change in their relevance for drivers before entering an intersection: analysis of drivers’ gaze and driving behavior in a driving simulator study

2013 ◽  
Vol 16 (2) ◽  
pp. 157-169 ◽  
Author(s):  
Julia Werneke ◽  
Mark Vollrath
Author(s):  
Harald Witt ◽  
Carl G. Hoyos

Accident statistics and studies of driving behavior have shown repeatedly that curved roads are hazardous. It was hypothesized that the safety of curves could be improved by indicating in advance the course of the road in a more effective way than do traditional road signs. A code of sequences of stripes put on right edge of the pavement was developed to indicate to the driver the radius of the curve ahead. The main characteristic of this code was the frequency of transitions from code elements to gaps between elements. The effect of these markings was investigated on a driving simulator. Twelve subjects drove on simulated roads of different curvature and with different placement of the code in the approach zone. Some positive effects of the advance information could be observed. The subjects drove more steadily, more precisely, and with a more suitable speed profile.


2021 ◽  
Author(s):  
Mustafa Suhail Almallah ◽  
Shabna Sayed Mohammed ◽  
Qinaat Hussain ◽  
Wael K. M. Alhajyaseen

The illegal overtaking/crossing of stopped school buses has been identified as one of the leading causes of students’ injuries and fatalities. The likelihood of students in getting involved in a school bus-related crash increases during loading/unloading. The main objective of this driving simulator study was to study the effectiveness of different treatments in improving students’ safety by reducing the illegal overtaking/crossing of stopped school buses. Treatments used in this research are LED, Road Narrowing and Red Pavement. All proposed treatments were compared with the control condition (i.e., typical condition in the State of Qatar). Seventy-two subjects with valid Qatari driving license were invited to participate in this study. Each subject was exposed to three situations (i.e., Situation 1: the school bus is stopped in the same traveling direction, Situation 2: the school bus is stopped in the opposite traveling direction, Situation 3: the school bus is not present at the bus stop). Results showed that LED and Road Narrowing treatments were effective in reducing the illegal overtaking/crossing of stopped school buses. Moreover, the stopping behavior for drivers in LED and Road Narrowing was more consistent compared to the Red Pavement and control conditions. Finally, LED and Road Narrowing treatments motivated drivers to reduce their traveling speed by 5.16 km/h and 5.11 km/h, respectively, even with the absence of the school bus. Taking into account the results from this study, we recommend the proposed LED and Road Narrowing as potentially effective treatments to improve students’ safety at school bus stop locations.


Author(s):  
Maria Rosaria De Blasiis ◽  
Chiara Ferrante ◽  
Antonella Santilli ◽  
Valerio Veraldi

Author(s):  
Moritz Berghaus ◽  
Eszter Kallo ◽  
Markus Oeser

In this paper we use traffic data from a driving simulator study to calibrate four different car-following models. We also present two applications for which the calibration results can be used. The first application relied on the advantage that driving simulator data also contain information on driver characteristics, for example, age, gender, or the self-assessment of driver behavior. By calibrating the models for each driver individually, the resulting model parameters could be used to analyze the influence of driver characteristics on driver behavior. The analysis revealed that certain characteristics, for example, self-identification as an aggressive driver, were reflected in the model parameters. The second application was based on the capability to simulate dangerous situations that require extreme driving behavior, which is often not included in datasets from real traffic and cannot be provoked in field studies. The model validity in these situations was analyzed by comparing the prediction errors of normal and extreme driving behavior. The results showed that all four car-following models underestimated the deceleration in an emergency braking scenario in which the drivers were momentarily shocked. The driving simulator study was validated by comparing the calibration results with those obtained from real trajectory data. We concluded that driving simulator data were suitable for the two proposed applications, although the validity of driving simulator studies must always be regarded.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Ya-Di Huang ◽  
Xiao-Peng Song ◽  
Wei Wu ◽  
Wen-Jun Du ◽  
Feng Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document