scholarly journals Bacillus subtilis EA-CB0575 genome reveals clues for plant growth promotion and potential for sustainable agriculture

2020 ◽  
Vol 20 (4) ◽  
pp. 575-589 ◽  
Author(s):  
Nicolás D. Franco-Sierra ◽  
Luisa F. Posada ◽  
Germán Santa-María ◽  
Magally Romero-Tabarez ◽  
Valeska Villegas-Escobar ◽  
...  
2018 ◽  
Vol 6 (3) ◽  
Author(s):  
Claudia Y. Muñoz-Moreno ◽  
Yumiko De La Cruz-Rodríguez ◽  
Julio Vega-Arreguín ◽  
Miguel Alvarado-Rodríguez ◽  
José Manuel Gómez-Soto ◽  
...  

ABSTRACTBacillus subtilis2C-9B, obtained from the rhizosphere of wild grass, exhibits inhibition against root rot causal pathogens inCapsicum annuum, Pb and Zn tolerance, and plant growth promotion in medium supplemented with Pb. The genome ofB. subtilis2C-9B was sequenced and the draft genome assembled, with a length of 4,215,855 bp and 4,723 coding genes.


Author(s):  
Bianca de Melo Silveira dos Santos ◽  
Maura Santos dos Reis de Andrade Silva ◽  
Davy William Hidalgo Chávez ◽  
Everlon Cid Rigobelo

Currently, agricultural practices have been undergoing intense transformations, imposing major challenges such as maintaining productivity with lower production costs and environmental impacts. One of the alternatives to meet these requirements is the use of plant growth promoting bacteria, including Bacillus subtilis. However, different isolates may express different aspects and levels of plant growth promotion. The present study aimed to verify the genetic and nutritional diversity of eight B. subtilis isolates, demonstrating different aspects and levels of plant growth promotion. Eight B. subtilis isolates were analyzed as to their nutritional diversity by BiologEcoPlate TM kit, genetic diversity by Box-PCR, and a trial in greenhouse conditions. The experimental design in greenhouse trial was completely randomized with 9 treatments and five replicates, resulting in 45 pots. Treatments were eight Bacillus subtilis strains, and a control treatment using plants without bacterial inoculation. Isolates 290 and 287 are genetically similar, while isolates 248 and 263 also showed similarity. Genetic and substrate consumption (carbon) analyses showed differences and similarities among isolates, allowing the distribution of isolates into different groups. It was observed that the isolate with the highest ability to promote plant growth was the only isolate that consumed glycyl-L- glutamic acid. These results open the way for further investigations in an attempt to clarify what are the conditions and / or characteristics required by isolates for the plant growth promotion to be more effective.


2021 ◽  
Author(s):  
Aiman Umar ◽  
Aneeqa Zafar ◽  
Hasina Wali ◽  
Meh Para Siddique ◽  
Muneer Ahmed Qazi ◽  
...  

Abstract At present time, every nation is absolutely concern about increase agricultural production and bioremediation of petroleum contaminated soil. Hence, with this intention in current study potent natural surfactant (surfactin) was evaluated for low-cost production by Bacillus subtilis SNW3, previously isolated from Fimkessar oil field, Chakwal Pakistan. The best results were obtained using substrates in combination (white beans powder (6% w/v) plus waste frying oil (1.5% w/v) and (0.1% w/v) urea) with surfactin production of about 1.17 g/L contributing 99% reduction in cost required for medium preparation. To the best of our knowledge, no single report is present describing surfactin production by Bacillus subtilis using white beans powder as a culture medium. Surfactin was confirmed as the principal product characterized by thin-layer chromatography (TLC) and Fourier-transform infrared spectroscopy (FTIR). Additionally, produced surfactin display great physicochemical properties of surface tension reduction value (SFT=28.8 mN/m), significant oil displacement activity (ODA=4.9 cm), excessive emulsification ability (E24=69.8 %), and attains critical micelle concentration (CMC) value at 0.58 mg/mL. Furthermore, surfactin exhibits excellent stability over an extensive range of pH (1-11), salinity (1-8%), temperature (20-121°C) and even after autoclaving. Subsequently, surfactin produced proved suitable for bioremediation of crude oil (86%) and as potent plant growth-promoting agent that significantly (P<0.05) increase seed germination and plant growth promotion of chili pepper, lettuce, tomato and pea maximum at concentration of (0.7 g/100 mL), proved as potential agent for agriculture and bioremediation processes by lowering economic and environmental stress.


2021 ◽  
Vol 2 ◽  
Author(s):  
Claudia A. Ramírez-Valdespino ◽  
Erasmo Orrantia-Borunda

Due to their unique properties and functionalities, nanomaterials can be found in different activities as pharmaceutics, cosmetics, medicine, and agriculture, among others. Nowadays, formulations with nano compounds exist to reduce the application of conventional pesticides and fertilizers. Among the most used are nanoparticles (NPs) of copper, zinc, or silver, which are known because of their cytotoxicity, and their accumulation can change the dynamic of microbes present in the soil. In agriculture, Trichoderma is widely utilized as a safe biocontrol strategy and to promote plant yield, making it susceptible to be in contact with nanomaterials that can interfere with its viability as well as its biocontrol and plant growth promotion effects. It is well-known that strains of Trichoderma can tolerate and uptake heavy metals in their bulk form, but it is poorly understood whether the same occurs with nanomaterials. Interestingly, Trichoderma can synthesize NPs that exhibit antimicrobial activities against various organisms of interest, including plant pathogens. In this study, we summarize the main findings regarding Trichoderma and nanotechnology, including its use to synthesize NPs and the consequence that these compounds might have in this fungus and its associations. Moreover, based on these findings we discuss whether it is feasible to develop agrochemicals that combine NPs and Trichoderma strains to generate more sustainable products or not.


Sign in / Sign up

Export Citation Format

Share Document