scholarly journals Evaluation of Pseudomonas stutzeri and Bacillus subtilis Strains for Plant Growth Promotion Potential on Capsicum annuum L.

2021 ◽  
Author(s):  
Amjid Khan

.

2022 ◽  
Vol 951 (1) ◽  
pp. 012060
Author(s):  
Syamsuddin ◽  
Halimursyadah ◽  
Samingan ◽  
V Maulidia

Abstract The research aims to find out the effect of pre-germination treatment seeds using rhizobacteria as plant growth promotion of two varieties of red chili peppers in the field. The experiment used a randomized design of factorial groups. Factors studied were varieties (V) and rhizobacteria types (R). The variety factor consists of 2 varieties namely PM999 (V1) and Kiyo F1 (V2). While the type of rhizobacteria factor tried consists of 8 treatment, namely, control (R0), Azotobacter sp. (R1), B. megaterium (R2), P. atmuta (R3), B. alvei (R4), Flavobacterium sp. (R5), B. coagulans (R6), B. firmus (R7) and B. pilymixa (Rs). Each treatment was repeated 3 times, so there were 48 experimental units. Each unit of experiment is represented by 5 sample plants. The data was analyzed using ANOVA and continued with DMRT test at real level α = 0.05. The results showed that vegetative growth and production of chili plants until the age of 45 days after planting in each variety is not dependent on the pre-germination treatment of seeds with rhizobacteria. But the varieties of chili plants used affect vegetative growth and production. PM999 varieties are superior to the Kiyo F1 variety. Pre-germination treatment of seeds using rhizobacteria is relatively effective in improving vegetative growth and yield of chili plants. Among the 8 isolates rizobacteria isolate Azotobacter sp., B. megaterium, B. coagulants, Flavobacterium sp., and P. atmuta relatively effective to provide an increased effect on the growth and production of chili plants.


2018 ◽  
Vol 6 (3) ◽  
Author(s):  
Claudia Y. Muñoz-Moreno ◽  
Yumiko De La Cruz-Rodríguez ◽  
Julio Vega-Arreguín ◽  
Miguel Alvarado-Rodríguez ◽  
José Manuel Gómez-Soto ◽  
...  

ABSTRACTBacillus subtilis2C-9B, obtained from the rhizosphere of wild grass, exhibits inhibition against root rot causal pathogens inCapsicum annuum, Pb and Zn tolerance, and plant growth promotion in medium supplemented with Pb. The genome ofB. subtilis2C-9B was sequenced and the draft genome assembled, with a length of 4,215,855 bp and 4,723 coding genes.


Agrociencia ◽  
2021 ◽  
Vol 55 (3) ◽  
pp. 227-242
Author(s):  
Alejandro Bolaños Dircio ◽  
Jeiry Toribio Jiménez ◽  
Miguel Á. Rodríguez Barrera ◽  
Giovanni Hernández Flores ◽  
Erubiel Toledo Hernández ◽  
...  

Plant growth promoting bacteria are known to directly or indirectly influence the development and yield of plants. Studies that show the biotechnological potential of these bacteria as biofertilizers are thus important. The objective of this study was to evaluate the growth capacities of strains M2-7 and LYA12 and define whether their interactions with Capsicum annuum L. increases production. The hypothesis was that the Bacillus licheniformis strains have capacities to promote growth and yield of Capsicum annuum L. First, these strains were evaluated in vitro in selective culture media to detect those direct or indirect mechanisms for plant growth promotion. Then, the effect of both strains on seed germination and the effect of strain M2-7 were studied on the in vivo development of C. annuum L. The experimental design was completely randomized with 3 treatments and 3 repetitions. Data was analyzed with ANOVA and Tukey test (p≤0.05). Results showed that the bacterial strains were able to fix nitrogen, solubilize tricalcium phosphate Ca3 (PO4)2, produce gibberellins, lytic enzymes (amylases, proteases, lipases and esterases), biosurfactants, volatile compounds; and significantly inhibit growth (p≤0.05) of the phytopathogenic fungus Colletotrichum sp. Likewise, the strains M2-7 and LYA12 increased (p≤0.05) by 89 and 78% the seed germination of C. annuum L. M2-7 enhanced fresh weight (235%), stem diameter (308%), root weight, number and weight of fruits (316%), as compared to treatment 1 (Nitrofoska) and 3 (Control). Therefore, B. licheniformis M2-7 strain is attractive to develop the formulation of biofertilizers; aiming to improve yield of some horticultural crops towards a sustainable and ecological agriculture.


Author(s):  
Bianca de Melo Silveira dos Santos ◽  
Maura Santos dos Reis de Andrade Silva ◽  
Davy William Hidalgo Chávez ◽  
Everlon Cid Rigobelo

Currently, agricultural practices have been undergoing intense transformations, imposing major challenges such as maintaining productivity with lower production costs and environmental impacts. One of the alternatives to meet these requirements is the use of plant growth promoting bacteria, including Bacillus subtilis. However, different isolates may express different aspects and levels of plant growth promotion. The present study aimed to verify the genetic and nutritional diversity of eight B. subtilis isolates, demonstrating different aspects and levels of plant growth promotion. Eight B. subtilis isolates were analyzed as to their nutritional diversity by BiologEcoPlate TM kit, genetic diversity by Box-PCR, and a trial in greenhouse conditions. The experimental design in greenhouse trial was completely randomized with 9 treatments and five replicates, resulting in 45 pots. Treatments were eight Bacillus subtilis strains, and a control treatment using plants without bacterial inoculation. Isolates 290 and 287 are genetically similar, while isolates 248 and 263 also showed similarity. Genetic and substrate consumption (carbon) analyses showed differences and similarities among isolates, allowing the distribution of isolates into different groups. It was observed that the isolate with the highest ability to promote plant growth was the only isolate that consumed glycyl-L- glutamic acid. These results open the way for further investigations in an attempt to clarify what are the conditions and / or characteristics required by isolates for the plant growth promotion to be more effective.


2020 ◽  
Vol 20 (4) ◽  
pp. 575-589 ◽  
Author(s):  
Nicolás D. Franco-Sierra ◽  
Luisa F. Posada ◽  
Germán Santa-María ◽  
Magally Romero-Tabarez ◽  
Valeska Villegas-Escobar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document