Glassy dynamics of simulated polymer melts: Coherent scattering and van Hove correlation functions

2001 ◽  
Vol 5 (2) ◽  
pp. 245-256 ◽  
Author(s):  
M. Aichele ◽  
J. Baschnagel
1982 ◽  
Vol 48 (24) ◽  
pp. 1694-1694 ◽  
Author(s):  
J. M. Deutsch ◽  
N. D. Goldenfeld

2019 ◽  
Vol 116 (6) ◽  
pp. 2015-2020 ◽  
Author(s):  
Elijah Flenner ◽  
Grzegorz Szamel

Translational dynamics of 2D glass-forming fluids is strongly influenced by soft, long-wavelength fluctuations first recognized by D. Mermin and H. Wagner. As a result of these fluctuations, characteristic features of glassy dynamics, such as plateaus in the mean-squared displacement and the self-intermediate scattering function, are absent in two dimensions. In contrast, Mermin–Wagner fluctuations do not influence orientational relaxation, and well-developed plateaus are observed in orientational correlation functions. It has been suggested that, by monitoring translational motion of particles relative to that of their neighbors, one can recover characteristic features of glassy dynamics and thus disentangle the Mermin–Wagner fluctuations from the 2D glass transition. Here we use molecular dynamics simulations to study viscoelastic relaxation in two and three dimensions. We find different behavior of the dynamic modulus below the onset of slow dynamics (determined by the orientational or cage-relative correlation functions) in two and three dimensions. The dynamic modulus for 2D supercooled fluids is more stretched than for 3D supercooled fluids and does not exhibit a plateau, which implies the absence of glassy viscoelastic relaxation. At lower temperatures, the 2D dynamic modulus starts exhibiting an intermediate time plateau and decays similarly to the 2D dynamic modulus. The differences in the glassy behavior of 2D and 3D glass-forming fluids parallel differences in the ordering scenarios in two and three dimensions.


Author(s):  
Douglas L. Dorset ◽  
Anthony J. Hancock

Lipids containing long polymethylene chains were among the first compounds subjected to electron diffraction structure analysis. It was only recently realized, however, that various distortions of thin lipid microcrystal plates, e.g. bends, polar group and methyl end plane disorders, etc. (1-3), restrict coherent scattering to the methylene subcell alone, particularly if undistorted molecular layers have well-defined end planes. Thus, ab initio crystal structure determination on a given single uncharacterized natural lipid using electron diffraction data can only hope to identify the subcell packing and the chain axis orientation with respect to the crystal surface. In lipids based on glycerol, for example, conformations of long chains and polar groups about the C-C bonds of this moiety still would remain unknown.One possible means of surmounting this difficulty is to investigate structural analogs of the material of interest in conjunction with the natural compound itself. Suitable analogs to the glycerol lipids are compounds based on the three configurational isomers of cyclopentane-1,2,3-triol shown in Fig. 1, in which three rotameric forms of the natural glycerol derivatives are fixed by the ring structure (4-7).


Sign in / Sign up

Export Citation Format

Share Document