Analysis of a New Nonlinear Subdivision Scheme. Applications in Image Processing

2005 ◽  
Vol 6 (2) ◽  
pp. 193-225 ◽  
Author(s):  
Sergio Amat ◽  
Rosa Donat ◽  
Jacques Liandrat ◽  
J. Carlos Trillo
Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1320
Author(s):  
Pedro Ortiz ◽  
Juan Carlos Trillo

In this paper, we introduce and analyze the behavior of a nonlinear subdivision operator called PPH, which comes from its associated PPH nonlinear reconstruction operator on nonuniform grids. The acronym PPH stands for Piecewise Polynomial Harmonic, since the reconstruction is built by using piecewise polynomials defined by means of an adaption based on the use of the weighted Harmonic mean. The novelty of this work lies in the generalization of the already existing PPH subdivision scheme to the nonuniform case. We define the corresponding subdivision scheme and study some important issues related to subdivision schemes such as convergence, smoothness of the limit function, and preservation of convexity. In order to obtain general results, we consider σ quasi-uniform grids. We also perform some numerical experiments to reinforce the theoretical results.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


2000 ◽  
Vol 179 ◽  
pp. 229-232
Author(s):  
Anita Joshi ◽  
Wahab Uddin

AbstractIn this paper we present complete two-dimensional measurements of the observed brightness of the 9th November 1990Hαflare, using a PDS microdensitometer scanner and image processing software MIDAS. The resulting isophotal contour maps, were used to describe morphological-cum-temporal behaviour of the flare and also the kernels of the flare. Correlation of theHαflare with SXR and MW radiations were also studied.


Author(s):  
M.A. O'Keefe ◽  
W.O. Saxton

A recent paper by Kirkland on nonlinear electron image processing, referring to a relatively new textbook, highlights the persistence in the literature of calculations based on incomplete and/or incorrect models of electron imageing, notwithstanding the various papers which have recently pointed out the correct forms of the appropriate equations. Since at least part of the problem can be traced to underlying assumptions about the illumination coherence conditions, we attempt to clarify both the assumptions and the corresponding equations in this paper, illustrating the effects of an incorrect theory by means of images calculated in different ways.The first point to be made clear concerning the illumination coherence conditions is that (except for very thin specimens) it is insufficient simply to know the source profiles present, i.e. the ranges of different directions and energies (focus levels) present in the source; we must also know in general whether the various illumination components are coherent or incoherent with respect to one another.


Sign in / Sign up

Export Citation Format

Share Document