scholarly journals Analysis of a New Nonlinear Interpolatory Subdivision Scheme on σ Quasi-Uniform Grids

Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1320
Author(s):  
Pedro Ortiz ◽  
Juan Carlos Trillo

In this paper, we introduce and analyze the behavior of a nonlinear subdivision operator called PPH, which comes from its associated PPH nonlinear reconstruction operator on nonuniform grids. The acronym PPH stands for Piecewise Polynomial Harmonic, since the reconstruction is built by using piecewise polynomials defined by means of an adaption based on the use of the weighted Harmonic mean. The novelty of this work lies in the generalization of the already existing PPH subdivision scheme to the nonuniform case. We define the corresponding subdivision scheme and study some important issues related to subdivision schemes such as convergence, smoothness of the limit function, and preservation of convexity. In order to obtain general results, we consider σ quasi-uniform grids. We also perform some numerical experiments to reinforce the theoretical results.

Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 335
Author(s):  
Pedro Ortiz ◽  
Juan Carlos Trillo

In this paper, we analyze the behavior of a nonlinear reconstruction operator called PPH around discontinuities. The acronym PPH stands for Piecewise Polynomial Harmonic, since it uses piecewise polynomials defined by means of an adaption based on the use of the weighted Harmonic mean. This study is carried out in the general case of nonuniform grids, although for some results we restrict to σ quasi-uniform grids. In particular we analyze the numerical order of approximation close to jump discontinuities and the elimination of the Gibbs effects. We show, both theoretically and with numerical examples, that the numerical order is reduced but not completely lost as it is the case in their linear counterparts. Moreover we observe that the reconstruction is free of any Gibbs effects for sufficiently small grid sizes.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 310 ◽  
Author(s):  
Pedro Ortiz ◽  
Juan Carlos Trillo

This paper is devoted to introducing a nonlinear reconstruction operator, the piecewise polynomial harmonic (PPH), on nonuniform grids. We define this operator and we study its main properties, such as its reproduction of second-degree polynomials, approximation order, and conditions for convexity preservation. In particular, for σ quasi-uniform grids with σ≤4, we get a quasi C3 reconstruction that maintains the convexity properties of the initial data. We give some numerical experiments regarding the approximation order and the convexity preservation.


2001 ◽  
Vol 6 (2) ◽  
pp. 310-320
Author(s):  
P. Oja ◽  
M. Tarang

Numerical stability of the spline collocation method by piecewise polynomials for Volterra integro‐differential equations is investigated. Stability conditions depending on collocation parameters and also on parameters of certain test equation are obtained. Results of several numerical tests are presented supporting theoretical results.


Acta Numerica ◽  
1993 ◽  
Vol 2 ◽  
pp. 65-109 ◽  
Author(s):  
C. de Boor

This article was supposed to be on ‘multivariate splines». An informal survey, taken recently by asking various people in Approximation Theory what they consider to be a ‘multivariate spline’, resulted in the answer that a multivariate spline is a possibly smooth piecewise polynomial function of several arguments. In particular the potentially very useful thin-plate spline was thought to belong more to the subject of radial basis funtions than in the present article. This is all the more surprising to me since I am convinced that the variational approach to splines will play a much greater role in multivariate spline theory than it did or should have in the univariate theory. Still, as there is more than enough material for a survey of multivariate piecewise polynomials, this article is restricted to this topic, as is indicated by the (changed) title.


2015 ◽  
Vol 18 (1) ◽  
pp. 231-249 ◽  
Author(s):  
Zhendong Gu ◽  
Yanping Chen

Our main purpose in this paper is to propose the piecewise Legendre spectral-collocation method to solve Volterra integro-differential equations. We provide convergence analysis to show that the numerical errors in our method decay in$h^{m}N^{-m}$-version rate. These results are better than the piecewise polynomial collocation method and the global Legendre spectral-collocation method. The provided numerical examples confirm these theoretical results.


2005 ◽  
Vol 6 (2) ◽  
pp. 193-225 ◽  
Author(s):  
Sergio Amat ◽  
Rosa Donat ◽  
Jacques Liandrat ◽  
J. Carlos Trillo

Author(s):  
T. N. T. Goodman

SynopsisWe consider interpolation by piecewise polynomials, where the interpolation conditions are on certain derivatives of the function at certain points of a periodic vector x, specified by a periodic incidence matrix G. Similarly, we allow discontinuity of certain derivatives of the piecewise polynomial at certain points of x, specified by a periodic incidence matrix H. This generalises the well-known cardinal spline interpolation of Schoenberg. We investigate conditions on G, H and x under which there is a unique bounded solution for any given bounded data.


2003 ◽  
Vol 8 (4) ◽  
pp. 315-328 ◽  
Author(s):  
I. Parts ◽  
A. Pedas

A piecewise polynomial collocation method for solving linear weakly singular integro‐differential equations of Volterra type is constructed. The attainable order of convergence of collocation approximations on arbitrary and quasi‐uniform grids is studied theoretically and numerically.


Sign in / Sign up

Export Citation Format

Share Document