scholarly journals A novel porous media-based approach to outflow boundary resistances of 1D arterial blood flow models

2019 ◽  
Vol 18 (4) ◽  
pp. 939-951
Author(s):  
Alberto Coccarelli ◽  
Arul Prakash ◽  
Perumal Nithiarasu
2018 ◽  
Vol 15 (149) ◽  
pp. 20180546 ◽  
Author(s):  
Fredrik E. Fossan ◽  
Jorge Mariscal-Harana ◽  
Jordi Alastruey ◽  
Leif R. Hellevik

As computational models of the cardiovascular system are applied in modern personalized medicine, maximizing certainty of model input becomes crucial. A model with a high number of arterial segments results in a more realistic description of the system, but also requires a high number of parameters with associated uncertainties. In this paper, we present a method to optimize/reduce the number of arterial segments included in one-dimensional blood flow models, while preserving key features of flow and pressure waveforms. We quantify the preservation of key flow features for the optimal network with respect to the baseline networks (a 96-artery and a patient-specific coronary network) by various metrics and quantities like average relative error, pulse pressure and augmentation pressure. Furthermore, various physiological and pathological states are considered. For the aortic root and larger systemic artery pressure waveforms a network with minimal description of lower and upper limb arteries and no cerebral arteries, sufficiently captures important features such as pressure augmentation and pulse pressure. Discrepancies in carotid and middle cerebral artery flow waveforms that are introduced by describing the arterial system in a minimalistic manner are small compared with errors related to uncertainties in blood flow measurements obtained by ultrasound.


1975 ◽  
Vol 8 (3-4) ◽  
pp. 237-245 ◽  
Author(s):  
Gary E. Saito ◽  
Terry J. Vander Werff

Author(s):  
L. K. Forbes

AbstractThe “Hartree hybrid method” has recently been employed in one-dimensional non-linear aortic blood-flow models, and the results obtained appear to indicate that shock-waves could only form in distances which exceed physiologically meaningful values. However, when the same method is applied with greater numerical accuracy to these models, the existence of a shock-wave in the vicinity of the heart is predicted. This appears to be contrary to present belief.


2013 ◽  
Vol 23 (2) ◽  
Author(s):  
Xenia Descovich ◽  
Giuseppe Pontrelli ◽  
Sauro Succi ◽  
Simone Melchionna ◽  
Manfred Bammer

Children ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 353
Author(s):  
Jayasree Nair ◽  
Lauren Davidson ◽  
Sylvia Gugino ◽  
Carmon Koenigsknecht ◽  
Justin Helman ◽  
...  

The optimal timing of cord clamping in asphyxia is not known. Our aims were to determine the effect of ventilation (sustained inflation–SI vs. positive pressure ventilation–V) with early (ECC) or delayed cord clamping (DCC) in asphyxiated near-term lambs. We hypothesized that SI with DCC improves gas exchange and hemodynamics in near-term lambs with asphyxial bradycardia. A total of 28 lambs were asphyxiated to a mean blood pressure of 22 mmHg. Lambs were randomized based on the timing of cord clamping (ECC—immediate, DCC—60 s) and mode of initial ventilation into five groups: ECC + V, ECC + SI, DCC, DCC + V and DCC + SI. The magnitude of placental transfusion was assessed using biotinylated RBC. Though an asphyxial bradycardia model, 2–3 lambs in each group were arrested. There was no difference in primary outcomes, the time to reach baseline carotid blood flow (CBF), HR ≥ 100 bpm or MBP ≥ 40 mmHg. SI reduced pulmonary (PBF) and umbilical venous (UV) blood flow without affecting CBF or umbilical arterial blood flow. A significant reduction in PBF with SI persisted for a few minutes after birth. In our model of perinatal asphyxia, an initial SI breath increased airway pressure, and reduced PBF and UV return with an intact cord. Further clinical studies evaluating the timing of cord clamping and ventilation strategy in asphyxiated infants are warranted.


2015 ◽  
Vol 26 (8) ◽  
pp. 2779-2789 ◽  
Author(s):  
Claus Christian Pieper ◽  
Winfried A. Willinek ◽  
Daniel Thomas ◽  
Hojjat Ahmadzadehfar ◽  
Markus Essler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document