Deformation of human red blood cells in extensional flow through a hyperbolic contraction

2019 ◽  
Vol 19 (1) ◽  
pp. 251-261
Author(s):  
Mohammad M. Faghih ◽  
M. Keith Sharp
1982 ◽  
Vol 96 (1) ◽  
pp. 209-220
Author(s):  
G. M. Hughes ◽  
Y. Kikuchi ◽  
H. Watari

The blood of a carangid fish, the yellowtail (Seriola quinqueradiata) has been studied with particular reference to the deformability properties of the red blood cells. The rate at which blood flows through a Nuclepore filter containing 5 micrometers pores has been determined under the same conditions that have been used with human blood. Marked differences were found in the flow of yellowtail blood which depended on the particular way in which the blood had been sampled. Such differences seem to be due to a sensitivity of fish red blood cells to their environmental conditions. Blood flow through filters is temperature-dependent, the rate increasing with a rise in temperature. Measurements made at 37 degrees C gave values which were similar to those normally obtained for human red blood cells, in spite of their greater dimensions (10.4 × 6.8 × 3.4 micrometers), and nucleated nature. It was also found that the blood flow rate of human blood was slower than that of yellowtail blood when measured at the normal environmental temperatures (15 degrees C) for these fish.


1990 ◽  
Vol 265 (27) ◽  
pp. 16035-16038 ◽  
Author(s):  
P Bütikofer ◽  
Z W Lin ◽  
D T Chiu ◽  
B Lubin ◽  
F A Kuypers

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ratnasekhar Ch ◽  
Guillaume Rey ◽  
Sandipan Ray ◽  
Pawan K. Jha ◽  
Paul C. Driscoll ◽  
...  

AbstractCircadian clocks coordinate mammalian behavior and physiology enabling organisms to anticipate 24-hour cycles. Transcription-translation feedback loops are thought to drive these clocks in most of mammalian cells. However, red blood cells (RBCs), which do not contain a nucleus, and cannot perform transcription or translation, nonetheless exhibit circadian redox rhythms. Here we show human RBCs display circadian regulation of glucose metabolism, which is required to sustain daily redox oscillations. We found daily rhythms of metabolite levels and flux through glycolysis and the pentose phosphate pathway (PPP). We show that inhibition of critical enzymes in either pathway abolished 24-hour rhythms in metabolic flux and redox oscillations, and determined that metabolic oscillations are necessary for redox rhythmicity. Furthermore, metabolic flux rhythms also occur in nucleated cells, and persist when the core transcriptional circadian clockwork is absent in Bmal1 knockouts. Thus, we propose that rhythmic glucose metabolism is an integral process in circadian rhythms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diego Sbardella ◽  
Grazia Raffaella Tundo ◽  
Luisa Campagnolo ◽  
Giuseppe Valacchi ◽  
Augusto Orlandi ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


Sign in / Sign up

Export Citation Format

Share Document