A study of the deformability of red blood cells of a teleost fish, the yellowtail (Seriola quinqueradiata), and a comparison with human erythrocytes

1982 ◽  
Vol 96 (1) ◽  
pp. 209-220
Author(s):  
G. M. Hughes ◽  
Y. Kikuchi ◽  
H. Watari

The blood of a carangid fish, the yellowtail (Seriola quinqueradiata) has been studied with particular reference to the deformability properties of the red blood cells. The rate at which blood flows through a Nuclepore filter containing 5 micrometers pores has been determined under the same conditions that have been used with human blood. Marked differences were found in the flow of yellowtail blood which depended on the particular way in which the blood had been sampled. Such differences seem to be due to a sensitivity of fish red blood cells to their environmental conditions. Blood flow through filters is temperature-dependent, the rate increasing with a rise in temperature. Measurements made at 37 degrees C gave values which were similar to those normally obtained for human red blood cells, in spite of their greater dimensions (10.4 × 6.8 × 3.4 micrometers), and nucleated nature. It was also found that the blood flow rate of human blood was slower than that of yellowtail blood when measured at the normal environmental temperatures (15 degrees C) for these fish.

Soft Matter ◽  
2014 ◽  
Vol 10 (24) ◽  
pp. 4258-4267 ◽  
Author(s):  
Dmitry A. Fedosov ◽  
Matti Peltomäki ◽  
Gerhard Gompper

The behavior of red blood cells (RBCs) in microvessels plays an important role in blood flow resistance and in the cell partitioning within a microcirculatory network. We employ mesoscopic hydrodynamic simulations to study the behavior and deformation of single RBCs in microchannels yielding the construction of diagrams of RBC shapes for a wide range of flow conditions.


2013 ◽  
Vol 10 (2-3) ◽  
pp. 135-138 ◽  
Author(s):  
A. K. Singh ◽  
D. P. Singh

The purpose of this study to show the effects of Hematocrit (Red blood cells), height of stenosis, porous parameter and velocity of blood on wall shear stress of the flow of blood through tapered artery. The study reveals that wall shear stress reduces for increasing Hematocrit percentage. It is also observed that wall shear stress increases as stenosis height and porous parameter increase whereas it decreases with the increasing values of velocity of blood and slope of tapered artery.


2020 ◽  
pp. 2106-2114
Author(s):  
Sefiu Onitilo ◽  
Mustapha Usman ◽  
Deborah Daniel

In this paper, the effects of hematocrit of red blood cells on blood flow through a stenosed human carotid artery was considered by taking blood as a Newtonian fluid. The governing equations on blood flow were derived. The mathematical content involved in the equations are the variables of interest such as number of stenosis , percentage of hematocrit  of red blood cells in the blood, flow rate, wall shear stress, and viscosity of the blood. Guided by medical data collected on the constraint of blood flow in stenosed human carotid arteries, the governing equations were used to check the effects of pressure gradient, wall shear stress, velocity, and volumetric flow rate of blood in the human carotid arteries. Also, the one-dimensional equation for the steady and axially symmetric flow of blood through an artery was transformed using Einstein’s coefficient of viscosity and hematocrit of red blood cells with the help of the boundary conditions. The effects of hematocrit on the blood flow characteristics are shown graphically and discussed briefly. It was discovered that the resistance increases as the level of hematocrit increases. Also, the wall shear stress decreases with the increase in the hematocrit level of the red blood cells. 


1988 ◽  
Vol 254 (6) ◽  
pp. H1167-H1171 ◽  
Author(s):  
S. Simchon ◽  
K. M. Jan ◽  
S. Chien

The effects of reduction in the surface charge of red blood cells (RBCs) on regional blood flow and RBC distribution were studied in rats anesthetized with pentobarbital sodium. RBCs were treated with neuraminidase to reduce their electrophoretic mobility by 56%. Normal and neuraminidase-treated RBCs labeled with 51Cr or 111In were injected into a femoral vein while an equal volume of blood was simultaneously withdrawn from a femoral artery. More than 70% of the neuraminidase-treated RBCs injected disappeared from the circulating blood in 30 min compared with less than 2% of normal RBCs. The relative distributions of neuraminidase-treated RBCs to normal RBCs, as determined from radioactivity counting, were significantly greater than 1 in the spleen (5.65 +/- 0.97, mean +/- SD), the liver (2.84 +/- 0.21), the lung (1.48 +/- 0.31), and the kidney (1.49 +/- 0.27), indicating a preferential trapping of neuraminidase-treated RBCs in these regions. This ratio was approximately 1 in all other organs. Regional blood flows in tissues were determined with 15-micron microspheres in the control period and after the infusion of neuraminidase-treated RBCs (experimental). Experimental-to-control blood flow ratios were 0.40 +/- 0.05 in the spleen, 0.66 +/- 0.06 in the liver, 0.78 +/- 0.03 in the lung, and 0.78 +/- 0.09 in the kidneys; this ratio was approximately 1 in all other organs. An experimental-to-control blood flow ratio less than 1 indicates a reduction in blood flow; this occurred in the same organs as those with trapping of neuraminidase-treated RBCs.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Author(s):  
Edwin David Lavi

The ability to transport and store a large human blood inventory for transfusions is an essential requirement for medical institutions. Thus, there is an important need for rapid and low-cost characterization tools for analyzing the properties of human red blood cells (RBCs) while in storage. In this study, we investigate the ability to use dielectrophoresis (DEP) for measuring the storage-induced changes in RBC electrical properties. Fresh human blood was collected, suspended in K2-EDTA anticoagulant and stored in a blood bank refrigerator for a period of 20 days. Cells were removed from storage at 5-day intervals and subjected to a glutaraldehyde crosslinking reaction to “freeze” cells at their ionic equilibrium at that point in time and prevent ion leakage during DEP analysis. The DEP behavior of RBCs was analyzed in a high permittivity DEP buffer using a three-dimensional DEP chip (3DEP) and also compared to measurements taken with a 2D quadrupole electrode array. The DEP analysis confirms that RBC electrical property changes occur during storage and are only discernable with the use of the cell crosslinking reaction above a glutaraldehyde fixation concentration of 1.0 w/v%. In particular, cytoplasm conductivity was observed to decrease by more than 75% while the RBC membrane conductance was observed to increase by more than 1000% over a period of 20 days. These results show that the presented combination of chemical crosslinking and DEP can be used as rapid characterization tool for monitoring electrical properties changes of human red blood cells while subjected to refrigeration in blood bank storage.


Sign in / Sign up

Export Citation Format

Share Document