Sharp upper and lower bounds for the Laplacian spectral radius and the spectral radius of graphs

2008 ◽  
Vol 24 (2) ◽  
pp. 289-296
Author(s):  
Ji-ming Guo
2018 ◽  
Vol 34 ◽  
pp. 191-204 ◽  
Author(s):  
Fouzul Atik ◽  
Pratima Panigrahi

The \emph{distance matrix} of a simple connected graph $G$ is $D(G)=(d_{ij})$, where $d_{ij}$ is the distance between the $i$th and $j$th vertices of $G$. The \emph{distance signless Laplacian matrix} of the graph $G$ is $D_Q(G)=D(G)+Tr(G)$, where $Tr(G)$ is a diagonal matrix whose $i$th diagonal entry is the transmission of the vertex $i$ in $G$. In this paper, first, upper and lower bounds for the spectral radius of a nonnegative matrix are constructed. Applying this result, upper and lower bounds for the distance and distance signless Laplacian spectral radius of graphs are given, and the extremal graphs for these bounds are obtained. Also, upper bounds for the modulus of all distance (respectively, distance signless Laplacian) eigenvalues other than the distance (respectively, distance signless Laplacian) spectral radius of graphs are given. These bounds are probably first of their kind as the authors do not find in the literature any bound for these eigenvalues. Finally, for some classes of graphs, it is shown that all distance (respectively, distance signless Laplacian) eigenvalues other than the distance (respectively, distance signless Laplacian) spectral radius lie in the smallest Ger\^sgorin disc of the distance (respectively, distance signless Laplacian) matrix.


2021 ◽  
Vol 631 ◽  
pp. 136-142
Author(s):  
B. Afshari ◽  
M.T. Saadati ◽  
R. Saadati

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Guimin Liu ◽  
Hongbin Lv

<p style='text-indent:20px;'>We obtain the improved results of the upper and lower bounds for the spectral radius of a nonnegative tensor by its majorization matrix's digraph. Numerical examples are also given to show that our results are significantly superior to the results of related literature.</p>


2018 ◽  
Vol 11 (05) ◽  
pp. 1850066 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Ebrahim Hashemi

The distance signless Laplacian matrix [Formula: see text] of a connected graph [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the distance matrix of [Formula: see text] and [Formula: see text] is the diagonal matrix whose main entries are the vertex transmissions of [Formula: see text], and the spectral radius of a connected graph [Formula: see text] is the largest eigenvalue of [Formula: see text]. In this paper, first we obtain the [Formula: see text]-eigenvalues of the join of certain regular graphs. Next, we give some new bounds on the distance signless Laplacian spectral radius of a graph [Formula: see text] in terms of graph parameters and characterize the extremal graphs. Utilizing these results we present some upper and lower bounds on the distance signless Laplacian energy of a graph [Formula: see text].


Filomat ◽  
2021 ◽  
Vol 35 (4) ◽  
pp. 1289-1304
Author(s):  
Weige Xi

Let G be a strongly connected digraph with distance matrix D(G) and let Tr(G) be the diagonal matrix with vertex transmissions of G. For any real ? ? [0, 1], define the matrix D?(G) as D?(G) = ?Tr(G) + (1-?)D(G). The D? spectral radius of G is the spectral radius of D?(G). In this paper, we first give some upper and lower bounds for the D? spectral radius of G and characterize the extremal digraphs. Moreover, for digraphs that are not transmission regular, we give a lower bound on the difference between the maximum vertex transmission and the D? spectral radius. Finally, we obtain the D? eigenvalues of the join of certain regular digraphs.


2015 ◽  
Vol 29 ◽  
pp. 3-16 ◽  
Author(s):  
Xue-Zhong Wang ◽  
Yimin Wei

The bounds for the Z-spectral radius of nonsingular H -tensor, the upper and lower bounds for the minimum H-eigenvalue of nonsingular (strong) M -tensor are studied in this paper. The sharper bounds are obtained. Numerical examples illustrate that our bounds give tighter bounds.


Filomat ◽  
2017 ◽  
Vol 31 (9) ◽  
pp. 2545-2555 ◽  
Author(s):  
Mustapha Aouchiche ◽  
Pierre Hansen

In the present paper we are interested in the study of the distance Laplacian eigenvalues of a connected graph with fixed order n and chromatic number x. We prove lower bounds on the distance Laplacian spectral radius in terms of n and x. We also prove results related to the distribution of the distance Laplacian eigenvalues with respect to the values of the chromatic number x. For some of the results, we characterize the extremal graphs, for others, we give examples of extremal graphs.


Sign in / Sign up

Export Citation Format

Share Document