Group classification of differential-difference equations: Low-dimensional Lie algebras

2017 ◽  
Vol 33 (2) ◽  
pp. 345-362 ◽  
Author(s):  
Shou-feng Shen ◽  
Yong-yang Jin
2000 ◽  
Vol 41 (1) ◽  
pp. 480-504 ◽  
Author(s):  
Vladimir Dorodnitsyn ◽  
Roman Kozlov ◽  
Pavel Winternitz

Author(s):  
Elvice Ongong’a ◽  
Johan Richter ◽  
Sergei Silvestrov
Keyword(s):  

Author(s):  
E. R. Shamardina

In this paper, we study the classification of three-dimensional Lie al­gebras over a field of complex numbers up to isomorphism. The proposed classification is based on the consideration of objects invariant with re­spect to isomorphism, namely such quantities as the derivative of a subal­gebra and the center of a Lie algebra. The above classification is distin­guished from others by a more detailed and simple presentation. Any two abelian Lie algebras of the same dimension over the same field are isomorphic, so we understand them completely, and from now on we shall only consider non-abelian Lie algebras. Six classes of three-dimensional Lie algebras not isomorphic to each other over a field of complex numbers are presented. In each of the classes, its properties are described, as well as structural equations defining each of the Lie alge­bras. One of the reasons for considering these low dimensional Lie alge­bras that they often occur as subalgebras of large Lie algebras


2008 ◽  
Vol 102 (1) ◽  
pp. 17 ◽  
Author(s):  
J. C. Benjumea ◽  
J. Núnez ◽  
A. F. Tenorio

The main goal of this paper is to compute a minimal matrix representation for each non-isomorphic nilpotent Lie algebra of dimension less than $6$. Indeed, for each of these algebras, we search the natural number $n\in\mathsf{N}\setminus\{1\}$ such that the linear algebra $\mathfrak{g}_n$, formed by all the $n \times n$ complex strictly upper-triangular matrices, contains a representation of this algebra. Besides, we show an algorithmic procedure which computes such a minimal representation by using the Lie algebras $\mathfrak{g}_n$. In this way, a classification of such algebras according to the dimension of their minimal matrix representations is obtained. In this way, we improve some results by Burde related to the value of the minimal dimension of the matrix representations for nilpotent Lie algebras.


2020 ◽  
Vol 15 (3-4) ◽  
pp. 232-237
Author(s):  
O.K. Babkov ◽  
G.Z. Mukhametova

The paper presents the results of point symmetrys Lie algebras for third-order nonlinear wave equations calculating linked into a chain by Bäcklund transformations. Calculations are carried out by using Lie-Ovsyannikov method of group analysis. The basic algebras of point symmetries of the indicated equations are found, all possible cases of their extension are revealed, and the commutator tables of algebras found are calculated.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1455
Author(s):  
Alina Dobrogowska ◽  
Karolina Wojciechowicz

We present a new look at the classification of real low-dimensional Lie algebras based on the notion of a linear bundle of Lie algebras. Belonging to a suitable family of Lie bundles entails the compatibility of the Lie–Poisson structures with the dual spaces of those algebras. This gives compatibility of bi-Hamiltonian structure on the space of upper triangular matrices and with a bundle at the algebra level. We will show that all three-dimensional Lie algebras belong to two of these families and four-dimensional Lie algebras can be divided in three of these families.


Sign in / Sign up

Export Citation Format

Share Document