Classification of Low-Dimensional Hom-Lie Algebras

Author(s):  
Elvice Ongong’a ◽  
Johan Richter ◽  
Sergei Silvestrov
Keyword(s):  
Author(s):  
E. R. Shamardina

In this paper, we study the classification of three-dimensional Lie al­gebras over a field of complex numbers up to isomorphism. The proposed classification is based on the consideration of objects invariant with re­spect to isomorphism, namely such quantities as the derivative of a subal­gebra and the center of a Lie algebra. The above classification is distin­guished from others by a more detailed and simple presentation. Any two abelian Lie algebras of the same dimension over the same field are isomorphic, so we understand them completely, and from now on we shall only consider non-abelian Lie algebras. Six classes of three-dimensional Lie algebras not isomorphic to each other over a field of complex numbers are presented. In each of the classes, its properties are described, as well as structural equations defining each of the Lie alge­bras. One of the reasons for considering these low dimensional Lie alge­bras that they often occur as subalgebras of large Lie algebras


2008 ◽  
Vol 102 (1) ◽  
pp. 17 ◽  
Author(s):  
J. C. Benjumea ◽  
J. Núnez ◽  
A. F. Tenorio

The main goal of this paper is to compute a minimal matrix representation for each non-isomorphic nilpotent Lie algebra of dimension less than $6$. Indeed, for each of these algebras, we search the natural number $n\in\mathsf{N}\setminus\{1\}$ such that the linear algebra $\mathfrak{g}_n$, formed by all the $n \times n$ complex strictly upper-triangular matrices, contains a representation of this algebra. Besides, we show an algorithmic procedure which computes such a minimal representation by using the Lie algebras $\mathfrak{g}_n$. In this way, a classification of such algebras according to the dimension of their minimal matrix representations is obtained. In this way, we improve some results by Burde related to the value of the minimal dimension of the matrix representations for nilpotent Lie algebras.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1455
Author(s):  
Alina Dobrogowska ◽  
Karolina Wojciechowicz

We present a new look at the classification of real low-dimensional Lie algebras based on the notion of a linear bundle of Lie algebras. Belonging to a suitable family of Lie bundles entails the compatibility of the Lie–Poisson structures with the dual spaces of those algebras. This gives compatibility of bi-Hamiltonian structure on the space of upper triangular matrices and with a bundle at the algebra level. We will show that all three-dimensional Lie algebras belong to two of these families and four-dimensional Lie algebras can be divided in three of these families.


2016 ◽  
Vol 14 (01) ◽  
pp. 1750007 ◽  
Author(s):  
A. Rezaei-Aghdam ◽  
M. Sephid

We describe the definition of Jacobi (generalized)–Lie bialgebras [Formula: see text] in terms of structure constants of the Lie algebras [Formula: see text] and [Formula: see text] and components of their 1-cocycles [Formula: see text] and [Formula: see text] in the basis of the Lie algebras. Then, using adjoint representations and automorphism Lie groups of Lie algebras, we give a method for classification of real low-dimensional Jacobi–Lie bialgebras. In this way, we obtain and classify real two- and three-dimensional Jacobi–Lie bialgebras.


Author(s):  
Manjit Singh ◽  
Rajesh Kumar Gupta

AbstractOptimal classifications of Lie algebras of some well-known equations under their group of inner automorphism are re-considered. By writing vector fields of some known Lie algebras in the abstract format, we have proved that there exist explicit isomorphism between Lie algebras and sub-algebras which have already been classified. The isomorphism between Lie algebras is useful in the sense that the classifications of sub-algebras of dimension ≤4 have previously been carried out in literature. These already available classifications can be used to write classification of any Lie algebra of dimension ≤4. As an example, the explicit isomorphism between Lie algebra of variant Boussinesq system and sub-algebra ${A}_{3,5}^{1/2}$ is proved, and subsequently, optimal sub-algebras up to dimension four are obtained. Besides this, some other examples of Lie algebras are also considered for explicit isomorphism.


Author(s):  
Benson Farb ◽  
Dan Margalit

The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. It begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn–Nielsen–Baer–theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.


2020 ◽  
Vol 10 (5) ◽  
pp. 1797 ◽  
Author(s):  
Mera Kartika Delimayanti ◽  
Bedy Purnama ◽  
Ngoc Giang Nguyen ◽  
Mohammad Reza Faisal ◽  
Kunti Robiatul Mahmudah ◽  
...  

Manual classification of sleep stage is a time-consuming but necessary step in the diagnosis and treatment of sleep disorders, and its automation has been an area of active study. The previous works have shown that low dimensional fast Fourier transform (FFT) features and many machine learning algorithms have been applied. In this paper, we demonstrate utilization of features extracted from EEG signals via FFT to improve the performance of automated sleep stage classification through machine learning methods. Unlike previous works using FFT, we incorporated thousands of FFT features in order to classify the sleep stages into 2–6 classes. Using the expanded version of Sleep-EDF dataset with 61 recordings, our method outperformed other state-of-the art methods. This result indicates that high dimensional FFT features in combination with a simple feature selection is effective for the improvement of automated sleep stage classification.


Sign in / Sign up

Export Citation Format

Share Document