Differential Geometry of Manifolds of Figures
Latest Publications


TOTAL DOCUMENTS

37
(FIVE YEARS 17)

H-INDEX

1
(FIVE YEARS 0)

Published By Immanuel Kant Baltic Federal University

0321-4796

Author(s):  
V. S. Malakhovsky

It is shown how to define one or several prime numbers following af­ter given prime number without using computer only by calculating sev­eral arithmetic progressions. Five examples of finding such prime num­bers are given.


Author(s):  
A. V. Bukusheva

Let M be an almost contact metric manifold of dimension n = 2m + 1. The distribution D of the manifold M admits a natural structure of a smooth manifold of dimension n = 4m + 1. On the manifold M, is defined a linear connection that preserves the distribution D; this connection is determined by the interior connection that allows parallel transport of admissible vectors along admissible curves. The assigment of the linear connection is equivalent to the assignment of a Riemannian metric of the Sasaki type on the distribution D. Certain tensor field of type (1,1) on D defines a so-called prolonged almost contact metric structure. Each section of the distribution D defines a morphism of smooth manifolds. It is proved that if a semi-invariant sub­manifold of the manifold M and is a covariantly constant vec­tor field with respect to the N-connection , then is a semi-invariant submanifold of the manifold D with respect to the prolonged almost contact metric structure.


Author(s):  
Yu. I. Shevchenko

We consider a space with Laptev's fundamental group connection generalizing spaces with Cartan connections. Laptev structural equations are reduced to a simpler form. The continuation of the given structural equations made it possible to find differential comparisons for the coeffi­cients in these equations. It is proved that one part of these coefficients forms a tensor, and the other part forms is quasitensor, which justifies the name quasitensor of torsion-curvature for the entire set. From differential congruences for the components of this quasitensor, congruences are ob­tained for the components of the Laptev curvature-torsion tensor, which contains 9 subtensors included in the unreduced structural equations. In two special cases, a space with a fundamental connection is a spa­ce with a Cartan connection, having a quasitensor of torsion-curvature, which contains a quasitensor of torsion. In the reductive case, the space of the Cartan connection is turned into such a principal bundle with connec­tion that has not only a curvature tensor, but also a torsion tensor.


Author(s):  
E. R. Shamardina

In this paper, we study the classification of three-dimensional Lie al­gebras over a field of complex numbers up to isomorphism. The proposed classification is based on the consideration of objects invariant with re­spect to isomorphism, namely such quantities as the derivative of a subal­gebra and the center of a Lie algebra. The above classification is distin­guished from others by a more detailed and simple presentation. Any two abelian Lie algebras of the same dimension over the same field are isomorphic, so we understand them completely, and from now on we shall only consider non-abelian Lie algebras. Six classes of three-dimensional Lie algebras not isomorphic to each other over a field of complex numbers are presented. In each of the classes, its properties are described, as well as structural equations defining each of the Lie alge­bras. One of the reasons for considering these low dimensional Lie alge­bras that they often occur as subalgebras of large Lie algebras


Author(s):  
M. V. Kretov

In three-dimensional equiaffine space, we consider a differentiable map generated by complexes with three-parameter families of elliptic paraboloids according to the method proposed by the author in the mate­rials of the international scientific conference on geometry and applica­tions in Bulgaria in 1986, as well as in works published earlier in the sci­entific collection of Differ. Geom. Mnogoobr. Figur. The study is carried out in the canonical frame, the vertex of which coincides with the top of the generating element of the manifold, the first two coordinate vectors are conjugate and lie in the tangent plane of the elliptic paraboloid at its vertex, the third coordinate vector is directed along the main diameter of the generating element so that the ends are, respectively, the sums of the first and third, and also the sums of the second and third coordinate vec­tors lay on a paraboloid, while the indicatrixes of all three coordinate vec­tors describe lines with tangents, parallel to the first coordinate vector. The existence theorem of the mapping under study is proved, according to which it exists and is determined with the arbitrariness of one function of one argument. The systems of equations of the indicatrix and the main directions of the mapping under consideration are obtained. The indicatrix and the cone of the main directions of the indicated mapping are geomet­rically characterized.


Author(s):  
N. A. Eliseeva

In the projective space, we continue to study a hypersurface with three strongly mutual distributions. For equipping distributions of a hypersurface, normalization in the sense of Norden — Chakmazyan is introduced internally. The distribution of the equipping planes is normal­ized in the sense of Norden — Chakmazyan if the fields of normals of the 1st kind and normals of the 2nd kind are attached to it in an invariant way. For each equipping distribution, the fields of normals of the 1st and 2nd kind are defined by the corresponding fields of quasitensors. At each point of the hypersurface, the normal of the 1st kind of the equipping dis­tribution of the hypersurface passes through the characteristic of the tan­gent hypersurface. This characteristic was obtained with displacements of the point along the integral curves of the equipping distribution. For equipping distributions, the coverage of quasitensors is found un­der which the conditions of invariance of the normals of the 1st and 2nd kind are satisfied. Coverage of quasitensors is found for which normalization in the sense of Norden — Chakmazyan is attached to the equipping distributions of the hypersurface in a second-order differential neighborhood.


Author(s):  
S. E. Stepanov ◽  
I. I. Tsyganok

Conformal Killing form is a natural generalization of con­formal Killing vector field. These forms were exten­si­vely studied by many geometricians. These considerations we­re motivated by existence of various applications for the­se forms. The vector space of conformal Killing p-forms on an n-dimensional closed Riemannian mani­fold M has a finite dimension na­med the Tachibana number. These numbers are conformal scalar invariant of M and satisfy the duality theorem: . In the present article we prove two vanishing theorems. According to the first theorem, there are no nonzero Tachi­bana numbers on an n-dimensional closed Rie­mannian manifold with pinched negative sectional curva­ture such that for some pinching con­stant . From the second theorem we conc­lude that there are no nonzero Tachibana numbers on a three-dimensional closed Riemannian manifold with ne­gative sectional curvature.


Author(s):  
A. V. Vyalova

The hypercentered planes family, whose dimension coincides with dimension of generating plane, is considered in the projective space. Two principal fiber bundles arise over it. Typical fiber for one of them is the stationarity subgroup for hypercentered plane, for other — the linear group operating in each tangent space to the manifold. The latter bundle is called the principal bundle of linear coframes. The structural forms of two bundles are related by equations. It is proved that hypercentered planes family is a holonomic smooth manifold. In the principal bundle of linear coframes the coaffine connection is given. From the differential equations it follows that the coaffine connec­tion object forms quasipseudotensor. It is proved that the curvature and torsion objects for the coaffine connection in the linear coframes bundle form pseudotensors.


Author(s):  
O. O. Belova

The space of centered planes is considered in the Cartan projec­ti­ve connection space . The space is important because it has con­nec­tion with the Grassmann manifold, which plays an important role in geometry and topology, since it is the basic space of a universal vector bundle. The space is an n-dimensional differentiable manifold with each point of which an n-dimensional projective space containing this point is associated. Thus, the manifold is the base, and the space is the n-dimensional fiber “glued” to the points of the base. A projective space is a quotient space of a linear space with respect to the equivalence (collinearity) of non-zero vectors, that is . The projective space is a manifold of di­men­sion n. In this paper we use the Laptev — Lumiste invariant analytical meth­od of differential geometric studies of the space of centered planes and introduce a fundamental-group connection in the associated bundle . The bundle contains four quotient bundles. It is show that the connection object is a quasi-tensor containing four subquasi-tensors that define connections in the corresponding quotient bundles.


Author(s):  
M. B. Banaru

The properties of almost Hermitian manifolds belonging to the Gray — Hervella class W4 are considered. The almost Hermitian manifolds of this class were studied by such outstanding geometers like Alfred Gray, Izu Vaisman, and Vadim Feodorovich Kirichenko. Using the Cartan structural equations of an almost contact metric structure induced on an arbitrary oriented hypersurface of a W4-manifold, some results on totally umbilical and totally geodesic hypersurfaces of W4-manifolds are presented. It is proved that the quasi-Sasakian structure induced on a totally umbilical hypersurface of a W4-manifold is either homothetic to a Sasakian structure or cosymplectic. Moreover, the quasi-Sasakian structure is cosymplectic if and only if the hypersurface is a to­tally geodesic submanifold of the considered W4-manifold. From the present result it immediately follows that the quasi-Sasakian structure induced on a totally umbilical hypersurface of a locally confor­mal Kählerian (LCK-) manifold also is either homothetic to a Sasakian structure or cosymplectic.


Sign in / Sign up

Export Citation Format

Share Document