The classification of three-dimensional Lie algeb­ras on complex field

Author(s):  
E. R. Shamardina

In this paper, we study the classification of three-dimensional Lie al­gebras over a field of complex numbers up to isomorphism. The proposed classification is based on the consideration of objects invariant with re­spect to isomorphism, namely such quantities as the derivative of a subal­gebra and the center of a Lie algebra. The above classification is distin­guished from others by a more detailed and simple presentation. Any two abelian Lie algebras of the same dimension over the same field are isomorphic, so we understand them completely, and from now on we shall only consider non-abelian Lie algebras. Six classes of three-dimensional Lie algebras not isomorphic to each other over a field of complex numbers are presented. In each of the classes, its properties are described, as well as structural equations defining each of the Lie alge­bras. One of the reasons for considering these low dimensional Lie alge­bras that they often occur as subalgebras of large Lie algebras

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1455
Author(s):  
Alina Dobrogowska ◽  
Karolina Wojciechowicz

We present a new look at the classification of real low-dimensional Lie algebras based on the notion of a linear bundle of Lie algebras. Belonging to a suitable family of Lie bundles entails the compatibility of the Lie–Poisson structures with the dual spaces of those algebras. This gives compatibility of bi-Hamiltonian structure on the space of upper triangular matrices and with a bundle at the algebra level. We will show that all three-dimensional Lie algebras belong to two of these families and four-dimensional Lie algebras can be divided in three of these families.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Mercedes Pérez ◽  
Francisco P. Pérez ◽  
Emilio Jiménez

On the basis of the family of quasifiliform Lie algebra laws of dimension 9 of 16 parameters and 17 constraints, this paper is devoted to identify the invariants that completely classify the algebras over the complex numbers except for isomorphism. It is proved that the nullification of certain parameters or of parameter expressions divides the family into subfamilies such that any couple of them is nonisomorphic and any quasifiliform Lie algebra of dimension 9 is isomorphic to one of them. The iterative and exhaustive computation with Maple provides the classification, which divides the original family into 263 subfamilies, composed of 157 simple algebras, 77 families depending on 1 parameter, 24 families depending on 2 parameters, and 5 families depending on 3 parameters.


2016 ◽  
Vol 14 (01) ◽  
pp. 1750007 ◽  
Author(s):  
A. Rezaei-Aghdam ◽  
M. Sephid

We describe the definition of Jacobi (generalized)–Lie bialgebras [Formula: see text] in terms of structure constants of the Lie algebras [Formula: see text] and [Formula: see text] and components of their 1-cocycles [Formula: see text] and [Formula: see text] in the basis of the Lie algebras. Then, using adjoint representations and automorphism Lie groups of Lie algebras, we give a method for classification of real low-dimensional Jacobi–Lie bialgebras. In this way, we obtain and classify real two- and three-dimensional Jacobi–Lie bialgebras.


Author(s):  
Manjit Singh ◽  
Rajesh Kumar Gupta

AbstractOptimal classifications of Lie algebras of some well-known equations under their group of inner automorphism are re-considered. By writing vector fields of some known Lie algebras in the abstract format, we have proved that there exist explicit isomorphism between Lie algebras and sub-algebras which have already been classified. The isomorphism between Lie algebras is useful in the sense that the classifications of sub-algebras of dimension ≤4 have previously been carried out in literature. These already available classifications can be used to write classification of any Lie algebra of dimension ≤4. As an example, the explicit isomorphism between Lie algebra of variant Boussinesq system and sub-algebra ${A}_{3,5}^{1/2}$ is proved, and subsequently, optimal sub-algebras up to dimension four are obtained. Besides this, some other examples of Lie algebras are also considered for explicit isomorphism.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mehdi Jamshidi ◽  
Farshid Saeedi ◽  
Hamid Darabi

PurposeThe purpose of this paper is to determine the structure of nilpotent (n+6)-dimensional n-Lie algebras of class 2 when n≥4.Design/methodology/approachBy dividing a nilpotent (n+6)-dimensional n-Lie algebra of class 2 by a central element, the authors arrive to a nilpotent (n+5) dimensional n-Lie algebra of class 2. Given that the authors have the structure of nilpotent (n+5)-dimensional n-Lie algebras of class 2, the authors have access to the structure of the desired algebras.FindingsIn this paper, for each n≥4, the authors have found 24 nilpotent (n+6) dimensional n-Lie algebras of class 2. Of these, 15 are non-split algebras and the nine remaining algebras are written as direct additions of n-Lie algebras of low-dimension and abelian n-Lie algebras.Originality/valueThis classification of n-Lie algebras provides a complete understanding of these algebras that are used in algebraic studies.


The aim of this paper is to describe how the Voronoi cell of a lattice changes as that lattice is continuously varied. The usual treatment is simplified by the introduction of new parameters called the vonorms and conorms of the lattice. The present paper deals with dimensions n ≼ 3; a sequel will treat four-dimensional lattices. An elegant algorithm is given for the Voronoi reduction of a three-dimensional lattice, leading to a new proof of Voronoi’s theorem that every lattice of dimension n ≼ 3 is of the first kind, and of Fedorov’s classification of the three-dimensional lattices into five types. There is a very simple formula for the determinant of a three-dimensional lattice in terms of its conorms.


2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Michel Goze ◽  
Elisabeth Remm

AbstractThe classification of complex or real finite dimensional Lie algebras which are not semi simple is still in its early stages. For example, the nilpotent Lie algebras are classified only up to dimension 7. Moreover, to recognize a given Lie algebra in the classification list is not so easy. In this work, we propose a different approach to this problem. We determine families for some fixed invariants and the classification follows by a deformation process or a contraction process. We focus on the case of 2- and 3-step nilpotent Lie algebras. We describe in both cases a deformation cohomology for this type of algebras and the algebras which are rigid with respect to this cohomology. Other


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1354 ◽  
Author(s):  
Hassan Almusawa ◽  
Ryad Ghanam ◽  
Gerard Thompson

In this investigation, we present symmetry algebras of the canonical geodesic equations of the indecomposable solvable Lie groups of dimension five, confined to algebras A 5 , 7 a b c to A 18 a . For each algebra, the related system of geodesics is provided. Moreover, a basis for the associated Lie algebra of the symmetry vector fields, as well as the corresponding nonzero brackets, are constructed and categorized.


Author(s):  
Graham J. Ellis

AbstractThe Hurewicz theorem, Mayer-Vietoris sequence, and Whitehead's certain exact sequence are proved for simplicial Lie algebras. These results are applied, using crossed module techniques, to obtain information on the low dimensional homology of a Lie algebra, and information on aspherical presentations of Lie algebras.


2005 ◽  
Vol 07 (02) ◽  
pp. 145-165 ◽  
Author(s):  
ALICE FIALOWSKI ◽  
MICHAEL PENKAVA

We consider versal deformations of 0|3-dimensional L∞ algebras, also called strongly homotopy Lie algebras, which correspond precisely to ordinary (non-graded) three-dimensional Lie algebras. The classification of such algebras is well-known, although we shall give a derivation of this classification using an approach of treating them as L∞ algebras. Because the symmetric algebra of a three-dimensional odd vector space contains terms only of exterior degree less than or equal to three, the construction of versal deformations can be carried out completely. We give a characterization of the moduli space of Lie algebras using deformation theory as a guide to understanding the picture.


Sign in / Sign up

Export Citation Format

Share Document