Neighbor sum distinguishing chromatic index of sparse graphs via the combinatorial Nullstellensatz

2018 ◽  
Vol 34 (1) ◽  
pp. 135-144
Author(s):  
Xiao-wei Yu ◽  
Yu-ping Gao ◽  
Lai-hao Ding
10.37236/5390 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Philip DeOrsey ◽  
Michael Ferrara ◽  
Nathan Graber ◽  
Stephen G. Hartke ◽  
Luke L. Nelsen ◽  
...  

The strong chromatic index of a graph $G$, denoted $\chi'_s(G)$, is the least number of colors needed to edge-color $G$ so that edges at distance at most two receive distinct colors. The strong list chromatic index, denoted $\chi'_{s,\ell}(G)$, is the least integer $k$ such that if arbitrary lists of size $k$ are assigned to each edge then $G$ can be edge-colored from those lists where edges at distance at most two receive distinct colors.We use the discharging method, the Combinatorial Nullstellensatz, and computation to show that if $G$ is a subcubic planar graph with ${\rm girth}(G) \geq 41$ then $\chi'_{s,\ell}(G) \leq 5$, answering a question of Borodin and Ivanova [Precise upper bound for the strong edge chromatic number of sparse planar graphs, Discuss. Math. Graph Theory, 33(4), (2014) 759--770]. We further show that if $G$ is a subcubic planar graph and ${\rm girth}(G) \geq 30$, then $\chi_s'(G) \leq 5$, improving a bound from the same paper.Finally, if $G$ is a planar graph with maximum degree at most four and ${\rm girth}(G) \geq 28$, then $\chi'_s(G)N \leq 7$, improving a more general bound of Wang and Zhao from [Odd graphs and its applications to the strong edge coloring, Applied Mathematics and Computation, 325 (2018), 246-251] in this case.


2019 ◽  
Vol 36 (1) ◽  
pp. 1-12
Author(s):  
Jia Ao Li ◽  
Katie Horacek ◽  
Rong Luo ◽  
Zheng Ke Miao

2002 ◽  
Vol 11 (1) ◽  
pp. 103-111 ◽  
Author(s):  
VAN H. VU

Suppose that G is a graph with maximum degree d(G) such that, for every vertex v in G, the neighbourhood of v contains at most d(G)2/f (f > 1) edges. We show that the list chromatic number of G is at most Kd(G)/log f, for some positive constant K. This result is sharp up to the multiplicative constant K and strengthens previous results by Kim [9], Johansson [7], Alon, Krivelevich and Sudakov [3], and the present author [18]. This also motivates several interesting questions.As an application, we derive several upper bounds for the strong (list) chromatic index of a graph, under various assumptions. These bounds extend earlier results by Faudree, Gyárfás, Schelp and Tuza [6] and Mahdian [13] and determine, up to a constant factor, the strong (list) chromatic index of a random graph. Another application is an extension of a result of Kostochka and Steibitz [10] concerning the structure of list critical graphs.


2018 ◽  
Vol 341 (7) ◽  
pp. 1835-1849 ◽  
Author(s):  
Samia Kerdjoudj ◽  
Kavita Pradeep ◽  
André Raspaud

10.37236/4084 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Uwe Schauz

We prove that the list-chromatic index and paintability index of $K_{p+1}$ is $p$, for all odd primes $p$. This implies that the List Edge Coloring Conjecture holds for complete graphs with less then 10 vertices. It also shows that there are arbitrarily big complete graphs for which the conjecture holds, even among the complete graphs of class 1. Our proof combines the Quantitative Combinatorial Nullstellensatz with the Paintability Nullstellensatz and a group action on symmetric Latin squares. It displays various ways of using different Nullstellensätze. We also obtain a partial proof of a version of Alon and Tarsi's Conjecture about even and odd Latin squares.


2015 ◽  
Vol 83 (4) ◽  
pp. 334-339 ◽  
Author(s):  
Daqing Yang ◽  
Xuding Zhu

2015 ◽  
Vol 115 (2) ◽  
pp. 326-330 ◽  
Author(s):  
Michał Dębski ◽  
Jarosław Grytczuk ◽  
Małgorzata Śleszyńska-Nowak

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3209
Author(s):  
Jelena Sedlar ◽  
Riste Škrekovski

A locally irregular graph is a graph in which the end vertices of every edge have distinct degrees. A locally irregular edge coloring of a graph G is any edge coloring of G such that each of the colors induces a locally irregular subgraph of G. A graph G is colorable if it allows a locally irregular edge coloring. The locally irregular chromatic index of a colorable graph G, denoted by χirr′(G), is the smallest number of colors used by a locally irregular edge coloring of G. The local irregularity conjecture claims that all graphs, except odd-length paths, odd-length cycles and a certain class of cacti are colorable by three colors. As the conjecture is valid for graphs with a large minimum degree and all non-colorable graphs are vertex disjoint cacti, we study rather sparse graphs. In this paper, we give a cactus graph B which contradicts this conjecture, i.e., χirr′(B)=4. Nevertheless, we show that the conjecture holds for unicyclic graphs and cacti with vertex disjoint cycles.


1978 ◽  
Vol 4 (1) ◽  
pp. 91
Author(s):  
Laczkovich ◽  
Petruska

Sign in / Sign up

Export Citation Format

Share Document