scholarly journals On the Strong Chromatic Index of Sparse Graphs

10.37236/5390 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Philip DeOrsey ◽  
Michael Ferrara ◽  
Nathan Graber ◽  
Stephen G. Hartke ◽  
Luke L. Nelsen ◽  
...  

The strong chromatic index of a graph $G$, denoted $\chi'_s(G)$, is the least number of colors needed to edge-color $G$ so that edges at distance at most two receive distinct colors. The strong list chromatic index, denoted $\chi'_{s,\ell}(G)$, is the least integer $k$ such that if arbitrary lists of size $k$ are assigned to each edge then $G$ can be edge-colored from those lists where edges at distance at most two receive distinct colors.We use the discharging method, the Combinatorial Nullstellensatz, and computation to show that if $G$ is a subcubic planar graph with ${\rm girth}(G) \geq 41$ then $\chi'_{s,\ell}(G) \leq 5$, answering a question of Borodin and Ivanova [Precise upper bound for the strong edge chromatic number of sparse planar graphs, Discuss. Math. Graph Theory, 33(4), (2014) 759--770]. We further show that if $G$ is a subcubic planar graph and ${\rm girth}(G) \geq 30$, then $\chi_s'(G) \leq 5$, improving a bound from the same paper.Finally, if $G$ is a planar graph with maximum degree at most four and ${\rm girth}(G) \geq 28$, then $\chi'_s(G)N \leq 7$, improving a more general bound of Wang and Zhao from [Odd graphs and its applications to the strong edge coloring, Applied Mathematics and Computation, 325 (2018), 246-251] in this case.


2019 ◽  
Vol 11 (06) ◽  
pp. 1950064
Author(s):  
Kai Lin ◽  
Min Chen ◽  
Dong Chen

Let [Formula: see text] be a graph. An [Formula: see text]-relaxed strong edge [Formula: see text]-coloring is a mapping [Formula: see text] such that for any edge [Formula: see text], there are at most [Formula: see text] edges adjacent to [Formula: see text] and [Formula: see text] edges which are distance two apart from [Formula: see text] assigned the same color as [Formula: see text]. The [Formula: see text]-relaxed strong chromatic index, denoted by [Formula: see text], is the minimum number [Formula: see text] of an [Formula: see text]-relaxed strong [Formula: see text]-edge-coloring admitted by [Formula: see text]. [Formula: see text] is called [Formula: see text]-relaxed strong edge [Formula: see text]-colorable if for a given list assignment [Formula: see text], there exists an [Formula: see text]-relaxed strong edge coloring [Formula: see text] of [Formula: see text] such that [Formula: see text] for all [Formula: see text]. If [Formula: see text] is [Formula: see text]-relaxed strong edge [Formula: see text]-colorable for any list assignment with [Formula: see text] for all [Formula: see text], then [Formula: see text] is said to be [Formula: see text]-relaxed strong edge [Formula: see text]-choosable. The [Formula: see text]-relaxed strong list chromatic index, denoted by [Formula: see text], is defined to be the smallest integer [Formula: see text] such that [Formula: see text] is [Formula: see text]-relaxed strong edge [Formula: see text]-choosable. In this paper, we prove that every planar graph [Formula: see text] with girth 6 satisfies that [Formula: see text]. This strengthens a result which says that every planar graph [Formula: see text] with girth 7 and [Formula: see text] satisfies that [Formula: see text].



2020 ◽  
Vol 12 (04) ◽  
pp. 2050035
Author(s):  
Danjun Huang ◽  
Xiaoxiu Zhang ◽  
Weifan Wang ◽  
Stephen Finbow

The adjacent vertex distinguishing edge coloring of a graph [Formula: see text] is a proper edge coloring of [Formula: see text] such that the color sets of any pair of adjacent vertices are distinct. The minimum number of colors required for an adjacent vertex distinguishing edge coloring of [Formula: see text] is denoted by [Formula: see text]. It is observed that [Formula: see text] when [Formula: see text] contains two adjacent vertices of degree [Formula: see text]. In this paper, we prove that if [Formula: see text] is a planar graph without 3-cycles, then [Formula: see text]. Furthermore, we characterize the adjacent vertex distinguishing chromatic index for planar graphs of [Formula: see text] and without 3-cycles. This improves a result from [D. Huang, Z. Miao and W. Wang, Adjacent vertex distinguishing indices of planar graphs without 3-cycles, Discrete Math. 338 (2015) 139–148] that established [Formula: see text] for planar graphs without 3-cycles.



Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 708
Author(s):  
Donghan Zhang

A theta graph Θ2,1,2 is a graph obtained by joining two vertices by three internally disjoint paths of lengths 2, 1, and 2. A neighbor sum distinguishing (NSD) total coloring ϕ of G is a proper total coloring of G such that ∑z∈EG(u)∪{u}ϕ(z)≠∑z∈EG(v)∪{v}ϕ(z) for each edge uv∈E(G), where EG(u) denotes the set of edges incident with a vertex u. In 2015, Pilśniak and Woźniak introduced this coloring and conjectured that every graph with maximum degree Δ admits an NSD total (Δ+3)-coloring. In this paper, we show that the listing version of this conjecture holds for any IC-planar graph with maximum degree Δ≥9 but without theta graphs Θ2,1,2 by applying the Combinatorial Nullstellensatz, which improves the result of Song et al.



10.37236/7016 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Mingfang Huang ◽  
Michael Santana ◽  
Gexin Yu

A strong edge-coloring of a graph $G$ is a coloring of the edges such that every color class induces a matching in $G$. The strong chromatic index of a graph is the minimum number of colors needed in a strong edge-coloring of the graph. In 1985, Erdős and Nešetřil conjectured that every graph with maximum degree $\Delta$ has a strong edge-coloring using at most $\frac{5}{4}\Delta^2$ colors if $\Delta$ is even, and at most $\frac{5}{4}\Delta^2 - \frac{1}{2}\Delta + \frac{1}{4}$ if $\Delta$ is odd. Despite recent progress for large $\Delta$ by using an iterative probabilistic argument, the only nontrivial case of the conjecture that has been verified is when $\Delta = 3$, leaving the need for new approaches to verify the conjecture for any $\Delta\ge 4$. In this paper, we apply some ideas used in previous results to an upper bound of 21 for graphs with maximum degree 4, which improves a previous bound due to Cranston in 2006 and moves closer to the conjectured upper bound of 20.



10.37236/2589 ◽  
2012 ◽  
Vol 19 (3) ◽  
Author(s):  
Danjun Huang ◽  
Weifan Wang

In this paper, we prove that every planar graph of maximum degree six without 7-cycles is class one.



2019 ◽  
Vol 342 (5) ◽  
pp. 1471-1480
Author(s):  
Ming Chen ◽  
Jie Hu ◽  
Xiaowei Yu ◽  
Shan Zhou


2002 ◽  
Vol 11 (1) ◽  
pp. 103-111 ◽  
Author(s):  
VAN H. VU

Suppose that G is a graph with maximum degree d(G) such that, for every vertex v in G, the neighbourhood of v contains at most d(G)2/f (f > 1) edges. We show that the list chromatic number of G is at most Kd(G)/log f, for some positive constant K. This result is sharp up to the multiplicative constant K and strengthens previous results by Kim [9], Johansson [7], Alon, Krivelevich and Sudakov [3], and the present author [18]. This also motivates several interesting questions.As an application, we derive several upper bounds for the strong (list) chromatic index of a graph, under various assumptions. These bounds extend earlier results by Faudree, Gyárfás, Schelp and Tuza [6] and Mahdian [13] and determine, up to a constant factor, the strong (list) chromatic index of a random graph. Another application is an extension of a result of Kostochka and Steibitz [10] concerning the structure of list critical graphs.





2018 ◽  
Vol 247 ◽  
pp. 389-397 ◽  
Author(s):  
Gerard Jennhwa Chang ◽  
Guan-Huei Duh


10.37236/4084 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Uwe Schauz

We prove that the list-chromatic index and paintability index of $K_{p+1}$ is $p$, for all odd primes $p$. This implies that the List Edge Coloring Conjecture holds for complete graphs with less then 10 vertices. It also shows that there are arbitrarily big complete graphs for which the conjecture holds, even among the complete graphs of class 1. Our proof combines the Quantitative Combinatorial Nullstellensatz with the Paintability Nullstellensatz and a group action on symmetric Latin squares. It displays various ways of using different Nullstellensätze. We also obtain a partial proof of a version of Alon and Tarsi's Conjecture about even and odd Latin squares.



Sign in / Sign up

Export Citation Format

Share Document