scholarly journals Proof of the List Edge Coloring Conjecture for Complete Graphs of Prime Degree

10.37236/4084 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Uwe Schauz

We prove that the list-chromatic index and paintability index of $K_{p+1}$ is $p$, for all odd primes $p$. This implies that the List Edge Coloring Conjecture holds for complete graphs with less then 10 vertices. It also shows that there are arbitrarily big complete graphs for which the conjecture holds, even among the complete graphs of class 1. Our proof combines the Quantitative Combinatorial Nullstellensatz with the Paintability Nullstellensatz and a group action on symmetric Latin squares. It displays various ways of using different Nullstellensätze. We also obtain a partial proof of a version of Alon and Tarsi's Conjecture about even and odd Latin squares.


10.37236/2101 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Mikio Kano ◽  
Saieed Akbari ◽  
Maryam Ghanbari ◽  
Mohammad Javad Nikmehr

Let $G$ be a graph. The core of $G$, denoted by $G_{\Delta}$, is the subgraph of $G$ induced by the vertices of degree $\Delta(G)$, where $\Delta(G)$ denotes the maximum degree of $G$. A $k$-edge coloring of $G$ is a function $f:E(G)\rightarrow L$ such that $|L| = k$ and $f(e_1)\neq f(e_2)$ for all two adjacent edges  $e_1$ and $e_2$ of $G$. The chromatic index of $G$, denoted by $\chi'(G)$, is the minimum number $k$ for which $G$ has a $k$-edge coloring.  A graph $G$ is said to be Class $1$ if $\chi'(G) = \Delta(G)$ and Class $2$ if $\chi'(G) = \Delta(G) + 1$. In this paper it is shown that every connected graph $G$ of even order and with $\Delta(G_{\Delta})\leq 2$ is Class $1$ if $|G_{\Delta}|\leq 9$ or $G_{\Delta}$ is a cycle of order $10$.



10.37236/5390 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Philip DeOrsey ◽  
Michael Ferrara ◽  
Nathan Graber ◽  
Stephen G. Hartke ◽  
Luke L. Nelsen ◽  
...  

The strong chromatic index of a graph $G$, denoted $\chi'_s(G)$, is the least number of colors needed to edge-color $G$ so that edges at distance at most two receive distinct colors. The strong list chromatic index, denoted $\chi'_{s,\ell}(G)$, is the least integer $k$ such that if arbitrary lists of size $k$ are assigned to each edge then $G$ can be edge-colored from those lists where edges at distance at most two receive distinct colors.We use the discharging method, the Combinatorial Nullstellensatz, and computation to show that if $G$ is a subcubic planar graph with ${\rm girth}(G) \geq 41$ then $\chi'_{s,\ell}(G) \leq 5$, answering a question of Borodin and Ivanova [Precise upper bound for the strong edge chromatic number of sparse planar graphs, Discuss. Math. Graph Theory, 33(4), (2014) 759--770]. We further show that if $G$ is a subcubic planar graph and ${\rm girth}(G) \geq 30$, then $\chi_s'(G) \leq 5$, improving a bound from the same paper.Finally, if $G$ is a planar graph with maximum degree at most four and ${\rm girth}(G) \geq 28$, then $\chi'_s(G)N \leq 7$, improving a more general bound of Wang and Zhao from [Odd graphs and its applications to the strong edge coloring, Applied Mathematics and Computation, 325 (2018), 246-251] in this case.







2007 ◽  
Vol Vol. 9 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Olivier Togni

Graphs and Algorithms International audience The strong chromatic index of a graph is the minimum number of colours needed to colour the edges in such a way that each colour class is an induced matching. In this paper, we present bounds for strong chromatic index of three different products of graphs in term of the strong chromatic index of each factor. For the cartesian product of paths, cycles or complete graphs, we derive sharper results. In particular, strong chromatic indices of d-dimensional grids and of some toroidal grids are given along with approximate results on the strong chromatic index of generalized hypercubes.



10.37236/3606 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Petteri Kaski ◽  
André de Souza Medeiros ◽  
Patric R.J. Östergård ◽  
Ian M. Wanless

We define two types of switchings between one-factorisations of complete graphs, called factor-switching and vertex-switching. For each switching operation and for each $n\le 12$, we build a switching graph that records the transformations between isomorphism classes of one-factorisations of $K_{n}$.  We establish various parameters of our switching graphs, including order, size, degree sequence, clique number and the radius of each component.As well as computing data for $n\le12$, we demonstrate several properties that hold for one-factorisations of $K_{n}$ for general $n$. We show that such factorisations have a parity which is not changed by factor-switching, and this leads to disconnected switching graphs. We also characterise the isolated vertices that arise from an absence of switchings. For factor-switching the isolated vertices are perfect one-factorisations, while for vertex-switching the isolated vertices are closely related to atomic Latin squares.



Author(s):  
Hiroki Osawa ◽  
Akira Suzuki ◽  
Takehiro Ito ◽  
Xiao Zhou


2020 ◽  
Vol 12 (04) ◽  
pp. 2050035
Author(s):  
Danjun Huang ◽  
Xiaoxiu Zhang ◽  
Weifan Wang ◽  
Stephen Finbow

The adjacent vertex distinguishing edge coloring of a graph [Formula: see text] is a proper edge coloring of [Formula: see text] such that the color sets of any pair of adjacent vertices are distinct. The minimum number of colors required for an adjacent vertex distinguishing edge coloring of [Formula: see text] is denoted by [Formula: see text]. It is observed that [Formula: see text] when [Formula: see text] contains two adjacent vertices of degree [Formula: see text]. In this paper, we prove that if [Formula: see text] is a planar graph without 3-cycles, then [Formula: see text]. Furthermore, we characterize the adjacent vertex distinguishing chromatic index for planar graphs of [Formula: see text] and without 3-cycles. This improves a result from [D. Huang, Z. Miao and W. Wang, Adjacent vertex distinguishing indices of planar graphs without 3-cycles, Discrete Math. 338 (2015) 139–148] that established [Formula: see text] for planar graphs without 3-cycles.



2014 ◽  
Vol 333 ◽  
pp. 6-13 ◽  
Author(s):  
Hong Zhu ◽  
Zhengke Miao




Sign in / Sign up

Export Citation Format

Share Document