Systemic resistance to bacterial leaf speck pathogen in Arabidopsis thaliana induced by the culture filtrate of a plant growth-promoting fungus (PGPF) Phoma sp. GS8-1

2008 ◽  
Vol 74 (3) ◽  
pp. 213-221 ◽  
Author(s):  
Md. Motaher Hossain ◽  
Farjana Sultana ◽  
Mayumi Kubota ◽  
Hiroyuki Koyama ◽  
Mitsuro Hyakumachi
PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e86882 ◽  
Author(s):  
Hushna Ara Naznin ◽  
Daigo Kiyohara ◽  
Minako Kimura ◽  
Mitsuo Miyazawa ◽  
Masafumi Shimizu ◽  
...  

2008 ◽  
Vol 98 (6) ◽  
pp. 666-672 ◽  
Author(s):  
J. Barriuso ◽  
B. Ramos Solano ◽  
F. J. Gutiérrez Mañero

The ability of four plant growth-promoting rhizobacteria, isolated in a previous study, to induce systemic resistance on Arabidopsis thaliana Col 0 against biotic and abiotic stress was evaluated. All the bacteria enhanced protection against the foliar pathogen Pseudomonas syringae DC3000 and increased plant tolerance to salt stress (NaCl 60 mM). Bacillus sp. strain L81 and Arthrobacter oxidans strain BB1 performed best with a decrease in the disease index of 61.2 and 52.3%, respectively, and a reduction in the mortality due to salt stress of 72.4 and 57.8%, respectively. Additionally, significant differences were found in growth and photosynthesis, again, L81 and BB1 performed best either in normal or under stress conditions. In order to elucidate the pathway elicited by these two strains to induce systemic resistance, experiments with the transgenic line of Arabidopsis thaliana NahG (defective in salicylic acid [SA]) and with the jar1 mutant (defective in jasmonic acid) were carried out. Results showed that the SA-dependent pathway was involved in the defense response induced by strains L81 and BB1. Results from quantitative reverse transcription-polymerase chain reaction analysis of the PR1 gene, related to the SA-dependent pathway and the PDF1.2 gene related to the SA-independent pathway, showed an increased expression of PR1 in BB1-treated plants, confirming involvement of the SA-dependent pathway in the defensive response.


Planta ◽  
2016 ◽  
Vol 245 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Shashidar Asari ◽  
Danuše Tarkowská ◽  
Jakub Rolčík ◽  
Ondřej Novák ◽  
David Velázquez Palmero ◽  
...  

2017 ◽  
Vol 9 (1) ◽  
pp. 121-128
Author(s):  
S. Kumar ◽  
M. Singh ◽  
Sushil Sharma

The root rot disease in Jatropha curcas L. caused by Rhizoctonia. bataticola (Taub.) Butler has been recorded in causing 10-12 per cent mortality of 20-30 days old seedlings of Jatropha curcasin southern Haryana. The incidence of this disease has also been observed from other parts of Haryana too. Induction of systemic resistance in host plants through microbes and their bioactive metabolites are attaining popularity in modern agricultural practices. Studies on the plant growth-promoting rhizobacteria induced resistance in Jatropha curcas through phenyl propanoid metabolism against Rhizoctoniabataticola were undertaken at Chaudhary Charan Singh, Haryana Agricultural University, Regional Research Station, Bawal. Three plant growth-promoting rhizobacteria (PGPRs) viz., Pseudomonas maltophila, Pseudomonas fluorescens and Bacillus subtilis were evaluated for their potential to induce systemic resistance in Jatropha against root rot. The maximum increase of 97 per cent in total phenols, 120 per cent in peroxidase, 123 per cent in polyphenol oxidase, 101 per cent in phenylalanine ammonia lyase and 298 per cent in tyrosine ammonia lyase was detected in plants raised with Pseudomonas fluorescens+ Rhizoctoniaba-taticola inoculation in Jatropha curcas at 10 days post inoculation against control except total phenols where it was maximum (99%) at 30 DPI. There was slight or sharp decline in these parameters with age irrespective of inoculations. The pathogen challenged plants showed lower levels of total phenols and enzymes. The observations revealed that seed bacterization with Pseudomonas fluorescens results in accumulation of phenolics and battery of enzymes in response to pathogen infection and thereby induce resistance systemically.


Sign in / Sign up

Export Citation Format

Share Document