Influence of loading rate on dynamic fracture behavior of fiber-reinforced composites

2008 ◽  
Vol 21 (5) ◽  
pp. 457-460 ◽  
Author(s):  
Kezhuang Gong ◽  
Zheng Li ◽  
Weizhong Qin

Sisal fiber reinforced composites are being replaced with manmade composites as these materials are difficult to manufacture and non biodegradable. On the other hand, the natural fiber reinforced composites such as sisal fiber reinforced composites shows less strength compared to manmade composites. The objective of the present work is to explore the mechanical properties of sisal fiber composites and hybrid sisal composites using analytical and experimental methods. The sisal composites and hybrid sisal composites are prepared by using hand layup techniques. The hybrid composites are prepared by reinforcing nano carbon powder and sisal fibers in a polymer matrix with the weight fraction of 9% of carbon powder and 50% of sisal fiber. The elastic modulus of polymer matrix with carbon powder reinforcement and polymer matrix, carbon powder and sisal fiber reinforced composites are identified by conducting suitable experiments. Later by using the finite element method, the fracture behavior of sisal fiber composites and hybrid composites are estimated. The energy released (ER) and energy required to create the surface (ES) are estimated to identify the critical crack length of the respective material. The present work is used for the design of sisal fiber composites with respect to young’s modulus and fracture response.


2020 ◽  
Vol 841 ◽  
pp. 288-293
Author(s):  
S.M. Moshiar Rahman ◽  
Md. Shafiul Ferdous

The fatigue limit and fracture behavior of epoxy carbon fiber reinforced composites and hybrid composites were investigated. An aluminum foil and thin aluminum plate were incorporated with the carbon fiber to make the hybrid reinforced composites. Several specimens were prepared, and a series of tests were carried out to investigate the fatigue life and fracture behavior. Then the results were compared among epoxy carbon fiber reinforced composites and the hybrid composites. It is discussed whether the S–N curves shows almost the similar characteristics of these two types of hybrid composites or not. As far as the present result, the stress ratio and the type of hybrid composites effect on the fatigue life. The interfacial bonding plays an important role in the strength and fracture behavior of notched specimen of the fabricated composites.


Sign in / Sign up

Export Citation Format

Share Document