Preface: Special Issue on Bone Fluid Flow: Organ to Cell, Lab Bench to Bedside, On Earth and In Space

2005 ◽  
Vol 33 (1) ◽  
pp. 1-2 ◽  
Author(s):  
Melissa L. Knothe Tate
Processes ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 178 ◽  
Author(s):  
Richeng Liu ◽  
Yujing Jiang

The fluid flow in fractured porous media plays a significant role in the characteristic/assessment of deep underground reservoirs such as CO2 sequestration [1–3], enhanced oil recovery [4,5] and geothermal energy development [...]


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3044
Author(s):  
Artur J. Jaworski

Fluid flow and heat transfer processes play an important role in many areas of science and engineering from the planetary scale (e [...]


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1344
Author(s):  
Mehrdad Massoudi

This Special Issue of Energies is dedicated to all aspects of fluid flow and heat transfer in geothermal applications, including the ground heat exchanger, conduction, and convection in porous media [...]


2010 ◽  
Vol 17 (3) ◽  
pp. 283-285
Author(s):  
A. M. Mancho ◽  
S. Wiggins ◽  
A. Turiel ◽  
E. Hernández-García ◽  
C. López ◽  
...  

Abstract. Nonlinear phenomena are essential ingredients in many oceanic and atmospheric processes, and successful understanding of them benefits from multidisciplinary collaboration between oceanographers, meteorologists, physicists and mathematicians. The present Special Issue on "Nonlinear Processes in Oceanic and Atmospheric Flows" contains selected contributions from attendants to the workshop which, in the above spirit, was held in Castro Urdiales, Spain, in July 2008. Here we summarize the Special Issue contributions, which include papers on the characterization of ocean transport in the Lagrangian and in the Eulerian frameworks, generation and variability of jets and waves, interactions of fluid flow with plankton dynamics or heavy drops, scaling in meteorological fields, and statistical properties of El Niño Southern Oscillation.


Author(s):  
M. Hu ◽  
R. Yeh ◽  
M. Lien ◽  
Y. X. Qin

Osteoporosis is a debilitating disease characterized as decreased bone mass and structural deterioration of bone tissue. Osteoporotic bone tissue turns itself into altered structure, which leads to weaker bones that are more susceptible for fractures. While often happening in elderly, long-term bed-rest patients, e.g. spinal cord injury, and astronauts who participate in long-duration spaceflights, osteoporosis has been considered as a major public health thread and causes great medical cost impacts to the society. Mechanobiology and novel stimulation on regulating bone health have long been recognized. Loading induced bone fluid flow, as a critical mechanotransductive promoter, has been demonstrated to regulate cellular signaling, osteogenesis, and bone adaptation [4]. As one of the factors that mediate bone fluid flow, intromedullary pressure (ImP) creates a pressure gradient that further influence the magnitude of mechanotransductory signals [5]. As for a potential translational development of ImP, our group has recently introduced a novel, non-invasive dynamic hydraulic stimulation (DHS) on bone structural enhancement. Its promising effects on inhibition of disuse bone loss has been shown with 2 Hz loading through a 4-week hindlimb suspension rat study followed by microCT analysis. At the cellular level, mesenchymal stem cells (MSCs) are defined by their self-renewal ability and that to potentially differentiate into the cells that form tissues such as bone [1]. To further elucidate the cellular effects of DHS and its potential mechanism on bone quality enhancement, the objective of this study was to measure MSC quantification in response to the in vivo mechanical signals driven by DHS.


Author(s):  
M. Hu ◽  
J. Cheng ◽  
S. Ferreri ◽  
F. Serra-Hsu ◽  
W. Lin ◽  
...  

Bone loss is a critical health problem of astronauts in long-term space missions. A growing number of evidence has pointed out bone fluid flow as a critical regulator in mechanotransductive signaling and bone adaptation. Intramedullary pressure (ImP) is a key mediator for bone fluid flow initiation and it influences the osteogenic signals within the skeleton. The potential ImP-induced bone fluid flow then triggers bone adaptation [1]. Previous in vivo study has demonstrated that ImP induced by oscillatory electrical stimulations can effectively mitigate disuse osteopenia in a frequency-dependent manner in a disuse rat model [2, 3]. In order to develop the translational potentials of ImP, a non-invasive intervention with direct fluid flow coupling is necessary to develop new treatments for microgravity-induced osteopenia/osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document