planetary scale
Recently Published Documents


TOTAL DOCUMENTS

583
(FIVE YEARS 167)

H-INDEX

44
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Junxing Chen ◽  
Hehe Jiang ◽  
Ming Tang ◽  
Jihua Hao ◽  
Meng Tian ◽  
...  

Abstract Terrestrial planets Venus and Earth have similar sizes, masses, and bulk compositions, but only Earth developed planetary-scale plate tectonics. Plate tectonics generates weatherable fresh rocks and transfers surface carbon back to Earth’s interior, which provides a long-term climate feedback, serving as a thermostat to keep Earth a habitable planet. Yet Venus shares a few common features with early Earth, such as stagnant-lid tectonics and the possible early development of a liquid ocean. Given all these similarities with early Earth, why would Venus fail to develop global-scale plate tectonics? In this study, we explore solutions to this problem by examining Venus’ slab densities under hypothesized subduction-zone conditions. Our petrologic simulations show that eclogite facies may be reached at greater depths on Venus than on Earth, and Venus’ slab densities are consistently lower than Earth’s. We suggest that the lack of sufficient density contrast between the high-pressure metamorphosed slab and mantle rocks may have impeded self-sustaining subduction. Although plume-induced crustal downwelling exists on Venus, the dipping of Venus’ crustal rocks to mantle depth fails to transition into subduction tectonics. As a consequence, the supply of fresh silicate rocks to the surface has been limited. This missing carbon sink eventually diverged the evolution of Venus’ surface environment from that of Earth.


Author(s):  
Walquer Huacani ◽  
Nelson P. Meza ◽  
Franklin Aguirre ◽  
Darío D. Sanchez ◽  
Evelyn N. Luque

The objective of this study is to analyze the deforestation of forest cover in the Apurimac region between 2001 and 2020 using the Google Earth Engine (GEE) platform, a planetary-scale platform for the analysis of environmental data. The methodology used in the analysis of the deforested area is based on the classification of cover, using a supervised classification method developed by the University of Maryland, based on a "decision tree".


2022 ◽  
Author(s):  
Sudip Chakraborty ◽  
Bin Guan ◽  
Duane Waliser ◽  
Arlindo da Silva

Abstract. Leveraging the concept of atmospheric rivers (ARs), a detection technique based on a widely utilized global algorithm to detect ARs (Guan et al., 2018; Guan and Waliser, 2015, 2019) was recently developed to detect aerosol atmospheric rivers (AARs) using the Modern-Era Retrospective analysis for Research and Applications, Version 2 reanalysis (Chakraborty et al., 2021a). The current study further characterizes and quantifies various details of AARs that were not provided in that study, such as AARs’ seasonality, event characteristics, vertical profiles of aerosol mass mixing ratio and wind speed, and the fraction of total annual aerosol transport conducted by AARs. Analysis is also performed to quantify the sensitivity of AAR detection to the criteria and thresholds used by the algorithm. AARs occur more frequently over, and typically extend from, regions with higher aerosol emission. For a number of planetary-scale pathways that exhibit large climatological aerosol transport, AARs contribute 40–80 % to the total annual transport. DU AARs are more frequent in boreal spring, SS AARs are often more frequent during the boreal winter (summer) in the Northern (Southern) Hemisphere, CA AARs are more frequent during dry seasons and often originate from the global rainforests and industrial areas, and SU AARs are present in the Northern Hemisphere during all seasons. For most aerosol types, the mass mixing ratio within AARs is highest near the surface and decreases monotonically with altitude. However, DU and CA AARs over or near the African continent exhibit peaks in their aerosol mixing ratio profiles around 700 hPa. AAR event characteristics are mostly independent of species with mean length, width, and length/width ratio around 4000 km, 600 km, and 8, respectively.


2021 ◽  
pp. 205943642110678
Author(s):  
John Hartley

Chinese policy has turned to the globalisation of communication and stories. Beyond the diplomatic ‘voice’, one of the ways that Chinese culture is reaching out to the rest of the world is through science fiction. Sci-fi can be construed as a specialist thinking-circuit for cultures to build and explore experimental models of collective action at global and planetary scale. What do its stories tell us about the globalisation of Chinese culture? When the need to ‘save the world’ has crossed over from sci-fi to science, from entertainment to activism, and from a thought experiment to imminent danger, humans as a whole face challenges of their own making: climate change, environmental pollution, pandemics, extinctions, exclusions and nuclear annihilation. Can sci-fi inspire collective action at species scale? What role will globalising China play?


2021 ◽  
Vol 9 ◽  
Author(s):  
Haibo Zhou ◽  
Ke Fan

This study reveals an intensified impact of winter (November–February mean) Arctic Oscillation (AO) on simultaneous precipitation over the mid–high latitudes of Asia (MHA) since the early 2000s. The unstable relationship may be related to the changes in the tropospheric AO mode and the subtropical jet. Further analyses suggest that their changes may be attributable to the interdecadal changes in the stratospheric polar vortex. During 2002–2017, the anomalously weak stratospheric polar vortex is accompanied by intensified upward-propagating tropospheric planetary-scale waves anomalies. Subsequently, the stratospheric geopotential height anomalies over the North Atlantic high-latitudes propagate downward strongly, causing the changes in the tropospheric AO mode, that is, the positive height anomalies over the North Atlantic high-latitudes are stronger and extend southward, corresponding to the stronger and eastward extension of negative height anomalies over the North Atlantic mid-latitudes. Thus, the Rossby wave source anomalies over Baffin Bay and the Black Sea are strong, and correspondingly so too are their subsequently excited the Rossby waves anomalies. Meanwhile, the planetary-scale waves anomalies propagate weakly along the low-latitude waveguide, causing the intensified and southward shift of the subtropical jet. Therefore, the strong Rossby waves anomalies propagate eastward to the MHA. By contrast, during 1979–1999, the strong stratospheric polar vortex anomaly is accompanied by weak upward-propagating planetary-scale waves anomalies, resulting in weaker height anomalies over the North Atlantic mid–high latitudes. Consequently, the anomalous Rossby waves are weak. In addition, the subtropical jet weakens and shifts northward, which causes the Rossby waves anomalies to dominate over the North Atlantic, and thereby the impact of winter AO on simultaneous precipitation over the MHA is weak.


2021 ◽  
Vol 3 ◽  
Author(s):  
Tomomichi Ogata ◽  
Yuya Baba

In this study, we examine the tropical cyclone (TC) activity over the western North Pacific (WNP) in 2018–2020 and its relationship with planetary scale convection and circulation anomalies, which play an important role for TC genesis. To determine the sea surface temperature (SST)-forced atmospheric variability, atmospheric general circulation model (AGCM) ensemble simulations are executed along with the observed SST. For AGCM experiments, we use two different convection schemes to examine uncertainty in convective parameterization and robustness of simulated atmospheric response. The observed TC activity and genesis potential demonstrated consistent features. In our AGCM ensemble simulations, the updated convection scheme improves the simulation ability of observed genesis potential as well as planetary scale convection and circulation features, e.g., in September–October–November (SON), a considerable increase in the genesis potential index over the WNP in SON 2018, WNP in SON 2019, and South China Sea (SCS) in SON 2020, which were not captured in the Emanuel scheme, have been simulated in the updated convection scheme.


2021 ◽  
Vol 922 (2) ◽  
pp. 176
Author(s):  
A. W. Hindle ◽  
P. J. Bushby ◽  
T. M. Rogers

Abstract Magnetically driven hotspot variations (which are tied to atmospheric wind variations) in hot Jupiters are studied using nonlinear numerical simulations of a shallow-water magnetohydrodynamic (SWMHD) system and a linear analysis of equatorial SWMHD waves. In hydrodynamic models, mid-to-high-latitude geostrophic circulations are known to cause a net west-to-east equatorial thermal energy transfer, which drives hotspot offsets eastward. We find that a strong toroidal magnetic field can obstruct these energy transporting circulations. This results in winds aligning with the magnetic field and generates westward Lorentz force accelerations in hotspot regions, ultimately causing westward hotspot offsets. In the subsequent linear analysis we find that this reversal mechanism has an equatorial wave analogy in terms of the planetary-scale equatorial magneto-Rossby waves. We compare our findings to three-dimensional MHD simulations, both quantitatively and qualitatively, identifying the link between the mechanics of magnetically driven hotspot and wind reversals. We use the developed theory to identify physically motivated reversal criteria, which can be used to place constraints on the magnetic fields of ultra-hot Jupiters with observed westward hotspots.


Author(s):  
Monica L. Noon ◽  
Allie Goldstein ◽  
Juan Carlos Ledezma ◽  
Patrick R. Roehrdanz ◽  
Susan C. Cook-Patton ◽  
...  

AbstractAvoiding catastrophic climate change requires rapid decarbonization and improved ecosystem stewardship at a planetary scale. The carbon released through the burning of fossil fuels would take millennia to regenerate on Earth. Though the timeframe of carbon recovery for ecosystems such as peatlands, mangroves and old-growth forests is shorter (centuries), this timeframe still exceeds the time we have remaining to avoid the worst impacts of global warming. There are some natural places that we cannot afford to lose due to their irreplaceable carbon reserves. Here we map ‘irrecoverable carbon’ globally to identify ecosystem carbon that remains within human purview to manage and, if lost, could not be recovered by mid-century, by when we need to reach net-zero emissions to avoid the worst climate impacts. Since 2010, agriculture, logging and wildfire have caused emissions of at least 4.0 Gt of irrecoverable carbon. The world’s remaining 139.1 ± 443.6 Gt of irrecoverable carbon faces risks from land-use conversion and climate change. These risks can be reduced through proactive protection and adaptive management. Currently, 23.0% of irrecoverable carbon is within protected areas and 33.6% is managed by Indigenous peoples and local communities. Half of Earth’s irrecoverable carbon is concentrated on just 3.3% of its land, highlighting opportunities for targeted efforts to increase global climate security.


Sign in / Sign up

Export Citation Format

Share Document