scholarly journals Numerical Modeling of Nitinol Stent Oversizing in Arteries with Clinically Relevant Levels of Peripheral Arterial Disease: The Influence of Plaque Type on the Outcomes of Endovascular Therapy

2017 ◽  
Vol 45 (6) ◽  
pp. 1420-1433 ◽  
Author(s):  
Can Gökgöl ◽  
Nicolas Diehm ◽  
Philippe Büchler
2019 ◽  
Vol 58 (6) ◽  
pp. e425
Author(s):  
Takaaki Kakihana ◽  
Hitoshi Goto ◽  
Daijirou Akamatsu ◽  
Yusuke Sekiguchi ◽  
Mina Akizuki ◽  
...  

2010 ◽  
Vol 52 (6) ◽  
pp. 1735-1736 ◽  
Author(s):  
Michael S. Hong ◽  
Khayree Butler ◽  
Trevan D. Fischer ◽  
Peter R. Nelson

2012 ◽  
Vol 56 (2) ◽  
pp. 545-554 ◽  
Author(s):  
Mauri J.A. Lepäntalo ◽  
Rabih Houbballah ◽  
Maxime Raux ◽  
Glenn LaMuraglia

2019 ◽  
Vol 73 (9) ◽  
pp. 1032
Author(s):  
Katsuki Tomonori ◽  
Yamaji Kyohei ◽  
Tomoi Yusuke ◽  
Hiramori Seiichi ◽  
Soga Yoshimitsu ◽  
...  

Author(s):  
Cornelia L. A. Dewald ◽  
Lena S. Becker ◽  
Sabine K. Maschke ◽  
Timo C. Meine ◽  
Bernhard C. Meyer ◽  
...  

Abstract Purpose Patients with peripheral arterial disease (PAD) or critical limb ischemia (CLI) require revascularization. Traditionally, endovascular therapy (EVT) is performed with iodinated contrast agent (ICM), which can provoke potential deterioration in renal function. CO2 is a safe negative contrast agent to guide vascular procedures, but interpretation of CO2 angiography is challenging. Changes in blood flow following iodine-aided EVT are assessable with 2D-perfusion angiography (2D-PA). The aim of this study was to evaluate 2D-PA as a tool to monitor blood flow changes during CO2-aided EVT. Material and Methods 2D-PA was performed before and after ten EVTs (nine stents; one endoprosthesis; 10/2012–02/2020) in nine patients (six men; 65 ± 10y) with Fontaine stage IIb (n = 8) and IV (n = 1). A reference ROI (ROIINFLOW) was placed in the artery before the targeted obstruction and a target ROI (ROIOUTFLOW) distally. Corresponding ROIs were used pre- and post-EVT. Time to peak (TTP), peak density (PD) and area under the curve (AUC) were computed. The reference/target ROI ratios (TTPOUTFLOW/TTPINFLOW; PDOUTFLOW/PDINFLOW; AUCOUTFLOW/AUCINFLOW) were calculated. Results 2D-PA was technically feasible in all cases. A significant increase of 82% in PDOUTFLOW/PDINFLOW (0.44 ± 0.4 to 0.8 ± 0.63; p = 0.002) and of 132% in AUCOUTFLOW/AUCINFLOW (0.34 ± 0.22 to 0.79 ± 0.59; p = 0.002) was seen. A trend for a decrease in TTPOUTFLOW/TTPINFLOW was observed (− 24%; 5.57 ± 3.66 s–4.25 ± 1.64 s; p = 0.6). Conclusion The presented 2D-PA technique facilitates the assessment of arterial flow in CO2-aided EVTs and has the potential to simplify the assessment of immediate treatment response.


Sign in / Sign up

Export Citation Format

Share Document