Artificial intelligence methods for analysis of electrocardiogram signals for cardiac abnormalities: state-of-the-art and future challenges

Author(s):  
Sanjeev Kumar Saini ◽  
Rashmi Gupta
IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 192880-192923 ◽  
Author(s):  
Md. Hasan Al Banna ◽  
Kazi Abu Taher ◽  
M. Shamim Kaiser ◽  
Mufti Mahmud ◽  
Md. Sazzadur Rahman ◽  
...  

2021 ◽  
Author(s):  
Andreas Sepp

Artificial intelligence and machine learning methods had significant contribution to the advancement and progress of predictive analytics. This article presents a state of the art of methods and applications of artificial intelligence and machine learning.


2014 ◽  
Vol 24 (2) ◽  
pp. 271-282 ◽  
Author(s):  
Piotr Bilski ◽  
Jacek Wojciechowski

Abstract The paper presents the state of the art and advancement of artificial intelligence methods in analog systems diagnostics. Firstly, the diagnostic domain is introduced and its problems explained. Then, computational intelligence approaches usable for fault detection and identification are reviewed. Particular groups of methods are presented in detail, explaining their usefulness and drawbacks. Examples, such as the induction motor or the electronic filter, are provided to show the applicability of the presented approaches for monitoring the state of analog objects from engineering domains. The discussion section reviews the presented approaches, their future prospects and problems to be solved.


2021 ◽  
Vol 193 (7) ◽  
Author(s):  
Yong Jie Wong ◽  
Yoshihisa Shimizu ◽  
Akinori Kamiya ◽  
Luksanaree Maneechot ◽  
Khagendra Pralhad Bharambe ◽  
...  

Author(s):  
Daniel Overhoff ◽  
Peter Kohlmann ◽  
Alex Frydrychowicz ◽  
Sergios Gatidis ◽  
Christian Loewe ◽  
...  

Purpose The DRG-ÖRG IRP (Deutsche Röntgengesellschaft-Österreichische Röntgengesellschaft international radiomics platform) represents a web-/cloud-based radiomics platform based on a public-private partnership. It offers the possibility of data sharing, annotation, validation and certification in the field of artificial intelligence, radiomics analysis, and integrated diagnostics. In a first proof-of-concept study, automated myocardial segmentation and automated myocardial late gadolinum enhancement (LGE) detection using radiomic image features will be evaluated for myocarditis data sets. Materials and Methods The DRG-ÖRP IRP can be used to create quality-assured, structured image data in combination with clinical data and subsequent integrated data analysis and is characterized by the following performance criteria: Possibility of using multicentric networked data, automatically calculated quality parameters, processing of annotation tasks, contour recognition using conventional and artificial intelligence methods and the possibility of targeted integration of algorithms. In a first study, a neural network pre-trained using cardiac CINE data sets was evaluated for segmentation of PSIR data sets. In a second step, radiomic features were applied for segmental detection of LGE of the same data sets, which were provided multicenter via the IRP. Results First results show the advantages (data transparency, reliability, broad involvement of all members, continuous evolution as well as validation and certification) of this platform-based approach. In the proof-of-concept study, the neural network demonstrated a Dice coefficient of 0.813 compared to the expert's segmentation of the myocardium. In the segment-based myocardial LGE detection, the AUC was 0.73 and 0.79 after exclusion of segments with uncertain annotation.The evaluation and provision of the data takes place at the IRP, taking into account the FAT (fairness, accountability, transparency) and FAIR (findable, accessible, interoperable, reusable) criteria. Conclusion It could be shown that the DRG-ÖRP IRP can be used as a crystallization point for the generation of further individual and joint projects. The execution of quantitative analyses with artificial intelligence methods is greatly facilitated by the platform approach of the DRG-ÖRP IRP, since pre-trained neural networks can be integrated and scientific groups can be networked.In a first proof-of-concept study on automated segmentation of the myocardium and automated myocardial LGE detection, these advantages were successfully applied.Our study shows that with the DRG-ÖRP IRP, strategic goals can be implemented in an interdisciplinary way, that concrete proof-of-concept examples can be demonstrated, and that a large number of individual and joint projects can be realized in a participatory way involving all groups. Key Points:  Citation Format


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 133
Author(s):  
Jérémie Sublime

The Tohoku tsunami was a devastating event that struck North-East Japan in 2011 and remained in the memory of people worldwide. The amount of devastation was so great that it took years to achieve a proper assessment of the economical and structural damage, with the consequences still being felt today. However, this tsunami was also one of the first observed from the sky by modern satellites and aircrafts, thus providing a unique opportunity to exploit these data and train artificial intelligence methods that could help to better handle the aftermath of similar disasters in the future. This paper provides a review of how artificial intelligence methods applied to case studies about the Tohoku tsunami have evolved since 2011. We focus on more than 15 studies that are compared and evaluated in terms of the data they require, the methods used, their degree of automation, their metric performances, and their strengths and weaknesses.


Sign in / Sign up

Export Citation Format

Share Document