Restricted interpolation property in superintuitionistic logics

2009 ◽  
Vol 48 (1) ◽  
pp. 33-53
Author(s):  
L. L. Maksimova
2009 ◽  
Vol 74 (4) ◽  
pp. 1171-1205 ◽  
Author(s):  
Emil Jeřábek

AbstractWe develop canonical rules capable of axiomatizing all systems of multiple-conclusion rules over K4 or IPC, by extension of the method of canonical formulas by Zakharyaschev [37]. We use the framework to give an alternative proof of the known analysis of admissible rules in basic transitive logics, which additionally yields the following dichotomy: any canonical rule is either admissible in the logic, or it is equivalent to an assumption-free rule. Other applications of canonical rules include a generalization of the Blok–Esakia theorem and the theory of modal companions to systems of multiple-conclusion rules or (unitary structural global) consequence relations, and a characterization of splittings in the lattices of consequence relations over monomodal or superintuitionistic logics with the finite model property.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Haihua Wang ◽  
Shu-Li Mei

Image segmentation variational method is good at processing the images with blurry and complicated contours, which is useful in quality identification of pathologic picture of onion. An adaptive Shannon wavelet precise integration method (WPIM) on digital image segmentation was proposed based on the image processing variational model to improve the processing speed and eliminate the artifacts of the images. First, taking full advantage of the interpolation property of the Shannon wavelet function, a multiscale Shannon wavelet interpolation scheme was constructed based on the homotopy perturbation method (HPM). The image pixels of the Burkholderia cepacia (ex-Burkholder) infected onions were taken as the collocation points of the WPIM. Then, with this scheme, the image segmentation model (C-V model) can be discretized into a system of nonlinear ODEs and solved by the half-analytical scheme combining the HPM and the precision integration method. At last, the numerical precision and efficiency of WPIM were discussed and compared with other common segmentation methods such as OSTU method and Sobel operator. The results show that the contour curve of the segmentation object obtained by the new method has many excellent properties such as closed and clear topological structure and the artifacts can be eliminated.


10.29007/bmlf ◽  
2018 ◽  
Author(s):  
Matthias Baaz ◽  
Anela Lolic

First-order interpolation properties are notoriously hard to determine, even for logics where propositional interpolation is more or less obvious. One of the most prominent examples is first-order G ̈odel logic. Lyndon interpolation is a strengthening of the interpolation property in the sense that propositional variables or predicate symbols are only allowed to occur positively (negatively) in the interpolant if they occur positively (negatively) on both sides of the implication. Note that Lyndon interpolation is difficult to establish for first-order logics as most proof-theoretic methods fail. In this paper we provide general derivability conditions for a first-order logic to admit Lyndon interpolation for the prenex ⊃ prenex fragment and apply the arguments to the prenex ⊃ prenex fragment of first-order Go ̈del logic.


2014 ◽  
Vol 7 (3) ◽  
pp. 455-483 ◽  
Author(s):  
MAJID ALIZADEH ◽  
FARZANEH DERAKHSHAN ◽  
HIROAKIRA ONO

AbstractUniform interpolation property of a given logic is a stronger form of Craig’s interpolation property where both pre-interpolant and post-interpolant always exist uniformly for any provable implication in the logic. It is known that there exist logics, e.g., modal propositional logic S4, which have Craig’s interpolation property but do not have uniform interpolation property. The situation is even worse for predicate logics, as classical predicate logic does not have uniform interpolation property as pointed out by L. Henkin.In this paper, uniform interpolation property of basic substructural logics is studied by applying the proof-theoretic method introduced by A. Pitts (Pitts, 1992). It is shown that uniform interpolation property holds even for their predicate extensions, as long as they can be formalized by sequent calculi without contraction rules. For instance, uniform interpolation property of full Lambek predicate calculus, i.e., the substructural logic without any structural rule, and of both linear and affine predicate logics without exponentials are proved.


2016 ◽  
Vol 59 (3) ◽  
pp. 624-640
Author(s):  
Noriyuki Otsubo

AbstractWe give a precise description of the homology group of the Fermat curve as a cyclic module over a group ring. As an application, we prove the freeness of the profinite homology of the Fermat tower. This allows us to define measures, an equivalent of Anderson’s adelic beta functions, in a manner similar to Ihara’s definition of ℓ-adic universal power series for Jacobi sums. We give a simple proof of the interpolation property using a motivic decomposition of the Fermat curve.


1977 ◽  
Vol 42 (2) ◽  
pp. 269-271 ◽  
Author(s):  
Dov M. Gabbay

This is a continuation of two previous papers by the same title [2] and examines mainly the interpolation property for the logic CD with constant domains, i.e., the extension of the intuitionistic predicate logic with the schemaIt is known [3], [4] that this logic is complete for the class of all Kripke structures with constant domains.Theorem 47. The strong Robinson consistency theorem is not true for CD.Proof. Consider the following Kripke structure with constant domains. The set S of possible worlds is ω0, the set of positive integers. R is the natural ordering ≤. Let ω0 0 = , Bn, is a sequence of pairwise disjoint infinite sets. Let L0 be a language with the unary predicates P, P1 and consider the following extensions for P,P1 at the world m.(a) P is true on ⋃i≤2nBi, and P1 is true on ⋃i≤2n+1Bi for m = 2n.(b) P is true on ⋃i≤2nBi, and P1 for ⋃i≤2n+1Bi for m = 2n.Let (Δ,Θ) be the complete theory of this structure. Consider another unary predicate Q. Let L be the language with P, Q and let M be the language with P1, Q.


Sign in / Sign up

Export Citation Format

Share Document