Programmable monolithic Gm-C band-pass filter: design and experimental results

2007 ◽  
Vol 54 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Eric Lebel ◽  
Ali Assi ◽  
Mohamad Sawan
2015 ◽  
Vol 77 (12) ◽  
Author(s):  
Kabir Ibrahim Jahun ◽  
Hussein Mohamed Hagi Hassan Abdirahman Mohamud Shire ◽  
Ali Orozi Sougui ◽  
S. H. Dahlan

Compact microstrip band-pass filter design using parallel coupled lines is presented in this paper. The microstrip lines are calculated and constructed using CST studio with two input and output ports of the filter structure are printed over Defected Ground Structure (DGS).The proposed symmetrical structure offers a simple and compact design while exhibiting an improved stop-band characteristics in comparison to conventional coupled microstrip line filter structure. The simulation and measurements of 2GHz prototype band pass filter are presented. The measured result agrees well with the simulation data. Compared with conventional parallel coupled line band pass filter, the second, third and fourth spurious responses are suppressed; in addition, the size of the prototype filter circuit is reduced up to 20.8%.  


2016 ◽  
Vol 26 (01) ◽  
pp. 1750013 ◽  
Author(s):  
Mehmet Sagbas ◽  
Umut Engin Ayten ◽  
Herman Sedef ◽  
Shahram Minaei

The aim of this paper is proposing an alternative method to Gorski-Popiel Technique in realization of synthetic transformers. A new synthetic floating transformer (FT) circuit is also given. The proposed synthetic transformer circuit uses two current backward transconductance amplifiers (CBTAs), three resistors, and two grounded capacitors. The primary self-inductance, the secondary self-inductance, and the mutual inductance can be independently controlled and can be tuned electronically by changing the biasing current of the employed CBTAs. It has a good sensitivity performance with respect to tracking errors. A band-pass filter is also realized to test the performance of the proposed synthetic transformer circuit. The validity of the proposed synthetic transformer circuit is demonstrated by PSPICE simulations and experimental results.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Santosh Vema Krishnamurthy ◽  
Kamal El-Sankary ◽  
Ezz El-Masry

A CMOS active inductor with thermal noise cancelling is proposed. The noise of the transistor in the feed-forward stage of the proposed architecture is cancelled by using a feedback stage with a degeneration resistor to reduce the noise contribution to the input. Simulation results using 90 nm CMOS process show that noise reduction by 80% has been achieved. The maximum resonant frequency and the quality factor obtained are 3.8 GHz and 405, respectively. An RF band-pass filter has been designed based on the proposed noise cancelling active inductor. Tuned at 3.46 GHz, the filter features total power consumption of 1.4 mW, low noise figure of 5 dB, and IIP3 of −10.29 dBm.


Author(s):  
El Beqal Asmae ◽  
Kritele Loubna ◽  
Benhala Bachir ◽  
Zorkani Izeddine

In this paper, two Meta-heuristic techniques; namely Ant Colony Optimization (ACO) and Genetic Algorithm (GA) have been applied for the optimal design of digital and analog filters. Those techniques have been used to solve multimodal optimization problem in Infinite Impulse Response (IIR) filter design and to select the optimal component values from industrial series as well as to minimize the total design error of a 2nd order Sallen-Key active band-pass filter, also a comparison between the performances reached by those two Meta-heuristics was made in this article.


2019 ◽  
Vol 13 (10) ◽  
pp. 1646-1654 ◽  
Author(s):  
Jian Chen ◽  
Wenzhen Wu ◽  
Shiyou Xu ◽  
Zengping Chen ◽  
Jiangwei Zou

Sign in / Sign up

Export Citation Format

Share Document