scholarly journals NANO-studio, the design environment of filter banks implemented in standard CMOS technology

Author(s):  
Andrzej Handkiewicz ◽  
Mariusz Naumowicz

AbstractThe paper presents a method of optimizing frequency characteristics of filter banks in terms of their implementation in digital CMOS technologies in nanoscale. Usability of such filters is demonstrated by frequency-interleaved (FI) analog-to-digital converters (ADC). An analysis filter present in these converters was designed in switched-current technique. However, due to huge technological pitch of standard digital CMOS process in nanoscale, its characteristics substantially deviate from the required ones. NANO-studio environment presented in the paper allows adjustment, with transistor channel sizes as optimization parameters. The same environment is used at designing a digital synthesis filter, whereas optimization parameters are input and output conductances, gyration transconductances and capacitances of a prototype circuit. Transition between analog s and digital z domains is done by means of bilinear transformation. Assuming a lossless gyrator-capacitor (gC) multiport network as a prototype circuit, both for analysis and synthesis filter banks in FI ADC, is an implementation of the strategy to design filters with low sensitivity to parameter changes. An additional advantage is designing the synthesis filter as stable infinite impulse response (IIR) instead of commonly used finite impulse response (FIR) filters. It provides several dozen-fold saving in the number of applied multipliers.. The analysis and synthesis filters in FI ADC are implemented as filter pairs. An additional example of three-filter bank demonstrates versatility of NANO-studio software.

Author(s):  
ASHOKA JAYAWARDENA ◽  
PAUL KWAN

In this paper, we focus on the design of oversampled filter banks and the resulting framelets. The framelets obtained exhibit improved shift invariant properties over decimated wavelet transform. Shift invariance has applications in many areas, particularly denoising, coding and compression. Our contribution here is on filter bank completion. In addition, we propose novel factorization methods to design wavelet filters from given scaling filters.


Author(s):  
David Rivas-Lalaleo ◽  
Sergio Muñoz-Romero ◽  
Monica Huerta ◽  
Víctor Bautista-Naranjo ◽  
Jorge García-Quintanilla ◽  
...  

2021 ◽  
pp. 204-268
Author(s):  
Victor Lazzarini

This chapter now turns to the discussion of filters, which extend the notion of spectrum beyond signals into the processes themselves. A gentle introduction to the concept of delaying signals, aided by yet another variant of the Fourier transform, the discrete-time Fourier transform, allows the operation of filters to be dissected. Another analysis tool, in the form of the z-transform, is brought to the fore as a complex-valued version of the discrete-time Fourier transform. A study of the characteristics of filters, introducing the notion of zeros and poles, as well as finite impulse response (FIR) and infinite impulse response (IIR) forms, composes the main body of the text. This is complemented by a discussion of filter design and applications, including ideas related to time-varying filters. The chapter conclusion expands once more the definition of spectrum.


Sign in / Sign up

Export Citation Format

Share Document