Comprehensive genome analysis of a novel actinobacterium with high potential for biotechnological applications, Nonomuraea aridisoli sp. nov., isolated from desert soil

Author(s):  
Hayrettin Saygin ◽  
Hilal Ay ◽  
Kiymet Guven ◽  
Demet Cetin ◽  
Nevzat Sahin
1999 ◽  
Vol 343 (1) ◽  
pp. 115-124 ◽  
Author(s):  
Thomas DANDEKAR ◽  
Stefan SCHUSTER ◽  
Berend SNEL ◽  
Martijn HUYNEN ◽  
Peer BORK

Comparative analysis of metabolic pathways in different genomes yields important information on their evolution, on pharmacological targets and on biotechnological applications. In this study on glycolysis, three alternative ways of comparing biochemical pathways are combined: (1) analysis and comparison of biochemical data, (2) pathway analysis based on the concept of elementary modes, and (3) a comparative genome analysis of 17 completely sequenced genomes. The analysis reveals a surprising plasticity of the glycolytic pathway. Isoenzymes in different species are identified and compared; deviations from the textbook standard are detailed. Several potential pharmacological targets and by-passes (such as the Entner-Doudoroff pathway) to glycolysis are examined and compared in the different species. Archaean, bacterial and parasite specific adaptations are identified and described.


Author(s):  
David Buhrke

Cyanobacteriochromes (CBCRs) are bi-stable photoreceptor proteins with high potential for biotechnological applications. Most of these proteins utilize phycocyanobilin (PCB) as light-sensing cofactor, which is unique to cyanobacteria, but some variants...


2009 ◽  
Author(s):  
Steve Krupp ◽  
Orla M. NicDomhnaill ◽  
Allan H. Church ◽  
Steven J. Robison ◽  
Michael N. Bazigos

2009 ◽  
Author(s):  
Michel A. Buffet ◽  
Robin R. Cohen ◽  
Michael Crespo ◽  
Stephen A. Dwight ◽  
Lorry A. Olson
Keyword(s):  

1963 ◽  
Vol 10 (01) ◽  
pp. 120-132 ◽  
Author(s):  
E. S Olesen

SummaryTreatment of serum with bentonite led to a reduced content of inhibitors of trypsin and urokinase in the isoelectrically precipitated euglobulin, and removed fibrinolytic agents and precursors from serum. Bentonite-treated serum added to untreated serum reduced precipitation of the above inhibitors, and presumably also precipitation of inhibitors against a plasminogen activator of serum.Bentonite-treated serum (whether from pig, ox, guinea-pig, or man), added to untreated guinea-pig serum, produced fibrinolytic activity on isoelectric precipitation of the mixture; the activity of the euglobulin was due to an activator of plasminogen as well as an active protease, probably plasmin. The described effects of bentonite-treated serum are similar to those previously reported for anionic polyelectrolytes. Possible mechanisms are discussed.The “non-specific” activation of fibrinolytic activity by means of bentonite emphasizes that guinea-pig serum [which is characterized by a high potential for “nonspecific” activation of its fibrinolytic system Olesen (1962)] contains all the elements required for the formation of an activator of plasminogen, and thus the activation of its plasminogen to plasmin.


Sign in / Sign up

Export Citation Format

Share Document