Green quasifunction method for vibration of simply-supported thin polygonic plates on Pasternak foundation

2007 ◽  
Vol 28 (7) ◽  
pp. 847-853 ◽  
Author(s):  
Hong Yuan ◽  
Shan-qing Li ◽  
Ren-huai Liu
2013 ◽  
Vol 353-356 ◽  
pp. 3215-3219
Author(s):  
Shan Qing Li ◽  
Hong Yuan

The quasi-Greens function method (QGFM) is applied to solve the bending problem of simply supported polygonal shallow spherical shells on Pasternak foundation. A quasi-Greens function is established by using the fundamental solution and the boundary equation of the problem. And the function satisfies the homogeneous boundary condition of the problem. Then the differential equation of the problem is reduced to two simultaneous Fredholm integral equations of the second kind by the Greens formula. The singularity of the kernel of the integral equation is overcome by choosing a suitable form of the normalized boundary equation. The comparison with the ANSYS finite element solution shows a good agreement, and it demonstrates the feasibility and efficiency of the proposed method.


2020 ◽  
pp. 108128652094777
Author(s):  
Giulio Maria Tonzani ◽  
Isaac Elishakoff

This paper analyzes the free vibration frequencies of a beam on a Winkler–Pasternak foundation via the original Timoshenko–Ehrenfest theory, a truncated version of the Timoshenko–Ehrenfest equation, and a new model based on slope inertia. We give a detailed comparison between the three models in the context of six different sets of boundary conditions. In particular, we analyze the most common combinations of boundary conditions deriving from three typical end constraints, namely the simply supported end, clamped end, and free end. An interesting intermingling phenomenon is presented for a simply-supported (S-S) beam together with proof of the ‘non-existence’ of zero frequencies for free-free (F-F) and simply supported-free (S-F) beams on a Winkler–Pasternak foundation.


2013 ◽  
Vol 219 (12) ◽  
pp. 6420-6430 ◽  
Author(s):  
S.M.R. Khalili ◽  
P. Abbaspour ◽  
K. Malekzadeh Fard

2020 ◽  
Vol 64 (1-4) ◽  
pp. 201-210
Author(s):  
Yoshikazu Tanaka ◽  
Satoru Odake ◽  
Jun Miyake ◽  
Hidemi Mutsuda ◽  
Atanas A. Popov ◽  
...  

Energy harvesting methods that use functional materials have attracted interest because they can take advantage of an abundant but underutilized energy source. Most vibration energy harvester designs operate most effectively around their resonant frequency. However, in practice, the frequency band for ambient vibrational energy is typically broad. The development of technologies for broadband energy harvesting is therefore desirable. The authors previously proposed an energy harvester, called a flexible piezoelectric device (FPED), that consists of a piezoelectric film (polyvinylidene difluoride) and a soft material, such as silicon rubber or polyethylene terephthalate. The authors also proposed a system based on FPEDs for broadband energy harvesting. The system consisted of cantilevered FPEDs, with each FPED connected via a spring. Simply supported FPEDs also have potential for broadband energy harvesting, and here, a theoretical evaluation method is proposed for such a system. Experiments are conducted to validate the derived model.


2014 ◽  
Vol 4 (4) ◽  
pp. 26-33
Author(s):  
P.Deepak Kumar ◽  
◽  
Ishan Sharma ◽  
P.R. Maiti ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document