Upwind finite difference method for miscible oil and water displacement problem with moving boundary values

2009 ◽  
Vol 30 (11) ◽  
pp. 1365-1378
Author(s):  
Yi-rang Yuan ◽  
Chang-feng Li ◽  
Cheng-shun Yang ◽  
Yu-ji Han
2021 ◽  
Author(s):  
QUAN SHEN ◽  
Bing Wu ◽  
GUANGWEN XIAO

Abstract In this paper a high order finite difference method is constructed to solve the elastohydrodynamic lubrication line contact problems, whose cavitation condition is handled by the penalty method. The highly nonlinear equations from the discretization of the high order finite difference method are solved by the trust-region dogleg algorithm. In order to reduce the numerical dissipation and dispersion brought by the high order upwind finite difference scheme, a high order biased upwind finite difference scheme is also presented. Our method is found to achieve more accurate solutions using just a small number of nodes compared to the multilevel methods combined with the lower order finite difference method.


1984 ◽  
Vol 106 (3) ◽  
pp. 486-490 ◽  
Author(s):  
A. M. Hassanein ◽  
G. L. Kulcinski

The solution of the heat conduction probem in moving boundary conditions is very important in predicting accurate thermal behavior of materials when very high energy deposition is expected. Such high fluxes are encountered on first wall materials and other components in fusion reactors. A numerical method has been developed to solve this problem by the use of the Green’s function. A comparison is made between this method and a finite difference one. The comparison in the finite difference method is made with and without the variation of the thermophysical properties with temperature. The agreement between Green’s function and the finite difference method is found to be very good. The advantages and disadvantages of using the Green’s function method and the importance of the variation of material thermal properties with temperature are discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Alvaro H. Salas ◽  
S. A. El-Tantawy ◽  
Jairo E. Castillo H.

In this paper, the dissipative and nondissipative modulated pulses such as rogue waves (RWs) and breathers (Kuznetsov-Ma breathers and Akhmediev breathers) that can exist and propagate in several fields of sciences, for example, plasma physics, have been analyzed numerically. For this purpose, the fluid dusty plasma equations with taking the kinematic dust viscosity into account are reduced to the linear damped nonlinear Schrödinger equation using a reductive perturbation technique. It is known that this equation is not integrable and, accordingly, does not have analytical solution. Thus, for modelling both dissipative RWs and breathers, the improved finite difference method is introduced for this purpose. It is found that FDM is a good numerical technique for small time interval but for large time interval it becomes sometimes unacceptable. Therefore, to describe these waves accurately, the new improved numerical method is considered, which is called the hybrid finite difference method and moving boundary method (FDM-MBM). This last and updated method gives an accurate and excellent description to many physical results, as it was applied to the dust plasma results and the results were good.


Sign in / Sign up

Export Citation Format

Share Document