Generalized score functions on interval-valued intuitionistic fuzzy sets with preference parameters for different types of decision makers and their application

2018 ◽  
Vol 48 (11) ◽  
pp. 4084-4095 ◽  
Author(s):  
Fangwei Zhang ◽  
Jihong Chen ◽  
Yuhua Zhu ◽  
Ziyi Zhuang ◽  
Jiaru Li
Author(s):  
TING-YU CHEN

Based on Jacquet-Lagreze's permutation method, QUALIFLEX is an outranking model that investigates all possible permutations of alternatives with respect to the consequences of all criteria. The purpose of this paper is to develop a QUALIFLEX-based method for multiple criteria group decision making within a decision environment of interval-valued intuitionistic fuzzy sets. We conduct a statistical inference approach with finite population correction to construct interval-valued intuitionistic fuzzy numbers. In addition, we incorporate the relative importance of decision makers and fuse individual opinions to form collective ratings using a modified method with weighted interval estimations. In view of diversiform preference types (weak order, strict order, difference order, interval bound, and ratio bound), we represent multiple decision makers' various forms of preference structures and assess criterion weights under incomplete information. By means of score functions, accuracy functions, membership-uncertainty indices, and hesitation-uncertainty indices, a ranking procedure is employed to identify a criterion-wise preference of alternatives. A QUALIFLEX-based model is then established to measure the level of concordance of the complete preference order for handling multiple criteria group decisions. The feasibility of the proposed method is illustrated by a practical problem relating to the selection of a landfill site. As indicated in the application, the proposed method is useful for handling complicated group decision-making problems that involve comprehensive criteria and limited alternatives.


2012 ◽  
Vol 2 (3) ◽  
pp. 35-50 ◽  
Author(s):  
Amal Kumar Adak ◽  
Monoranjan Bhowmik ◽  
Madhumangal Pal

In this paper, some different types of interval cut-set of genaralized interval-valued intuitionistic fuzzy sets (GIVIFSs), complement of these cut-sets are introduced. Some properties of those cut-set of GIVIFSs are investigated. Also three decomposition theorems of GIVIFSs are obtained based on the different cut-set of GIVIFSs. These works can also be used in setting up the basic theory of GIVIFSs.


2014 ◽  
Vol 2014 ◽  
pp. 1-22 ◽  
Author(s):  
Juan-juan Peng ◽  
Jian-qiang Wang ◽  
Jing Wang ◽  
Xiao-hong Chen

The definition of hesitant interval-valued intuitionistic fuzzy sets (HIVIFSs) is developed based on interval-valued intuitionistic fuzzy sets (IVIFSs) and hesitant fuzzy sets (HFSs). Then, some operations on HIVIFSs are introduced in detail, and their properties are further discussed. In addition, some hesitant interval-valued intuitionistic fuzzy number aggregation operators based ont-conorms andt-norms are proposed, which can be used to aggregate decision-makers' information in multicriteria decision-making (MCDM) problems. Some valuable proposals of these operators are studied. In particular, based on algebraic and Einsteint-conorms andt-norms, some hesitant interval-valued intuitionistic fuzzy algebraic aggregation operators and Einstein aggregation operators can be obtained, respectively. Furthermore, an approach of MCDM problems based on the proposed aggregation operators is given using hesitant interval-valued intuitionistic fuzzy information. Finally, an illustrative example is provided to demonstrate the applicability and effectiveness of the developed approach, and the study is supported by a sensitivity analysis and a comparison analysis.


2016 ◽  
Vol 5 (4) ◽  
pp. 192-210 ◽  
Author(s):  
Bhagawati Prasad Joshi

Due to the huge applications of fuzzy set theory, many generalizations were available in literature. Atanassov (1983) and Atanassov and Gargov (1989) introduced the notions of intuitionistic fuzzy sets (IFSs) and interval-valued intuitionistic fuzzy sets (IVIFSs) respectively. It is observed that IFSs and IVIFSs are more suitable tools for dealing with imprecise information and very powerful in modeling real life problems. However, many researchers made efforts to rank IVIFSs due to its importance in fusion of information. In this paper, a new ranking method is introduced and studied for IVIFSs. The proposed method is compared and illustrated with other existing methods by numerical examples. Then, it is utilized to identify the best alternative in multiple criteria decision-making problems in which criterion values for alternatives are IVIFSs. On the basis of the developed approach, it would provide a powerful way to the decision-makers to make his or her decision under IVIFSs. The validity and applicability of the proposed method are illustrated with practical examples.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 668
Author(s):  
Wei-Bo Zhu ◽  
Bin Shuai ◽  
Shi-Hang Zhang

Linguistic interval-valued intuitionistic fuzzy sets, as an extension of interval-valued intuitionistic fuzzy sets, have strong practical value in the management of complex uncertainty system with qualitative evaluation information. This study focuses on the development of several linguistic interval-valued intuitionistic fuzzy Hamacher (LIVIFH) aggregation operators based on the extended Hamacher t-norm and s-norm. First, the extended Hamacher t-norm and s-norm, which are applicable to linguistic information environment, are applied to define the linguistic interval-valued intuitionistic fuzzy Hamacher operational laws. Second, based on the proposed operational laws, this study defines the linguistic interval-valued intuitionistic fuzzy Hamacher weighted average (LIVIFHWA) operator and the linguistic interval-valued intuitionistic fuzzy Hamacher weighted geometric (LIVIFHWG) operator, and then investigates their properties. Furthermore, the degeneracy and monotonicity of the proposed operators with respect to the adjustable parameter are explored. Finally, a multiple attribute group decision-making (MAGDM) approach is developed based on the proposed LIVIFH aggregation operators, and then this approach is applied to a supplier selection problem. Parameter analysis indicates that the adjustable parameter in the proposed LIVIFH aggregation operators could reflect the attitudes of decision makers. The LIVIFHWA operator would be more appropriate to optimistic decision makers, and the LIVIFHWG operator to pessimistic decision makers. In addition, as the adjustable parameter increasing, both attitudes tend to be neutral. The proposed method is also compared with two other approaches to show its feasibility and efficiency.


2021 ◽  
pp. 1-13
Author(s):  
Xi Li ◽  
Chunfeng Suo ◽  
Yongming Li

An essential topic of interval-valued intuitionistic fuzzy sets(IVIFSs) is distance measures. In this paper, we introduce a new kind of distance measures on IVIFSs. The novelty of our method lies in that we consider the width of intervals so that the uncertainty of outputs is strongly associated with the uncertainty of inputs. In addition, better than the distance measures given by predecessors, we define a new quaternary function on IVIFSs to construct the above-mentioned distance measures, which called interval-valued intuitionistic fuzzy dissimilarity function. Two specific methods for building the quaternary functions are proposed. Moreover, we also analyzed the degradation of the distance measures in this paper, and show that our measures can perfectly cover the measures on a simpler set. Finally, we provide illustrative examples in pattern recognition and medical diagnosis problems to confirm the effectiveness and advantages of the proposed distance measures.


Sign in / Sign up

Export Citation Format

Share Document