Citrus disease detection and classification using end-to-end anchor-based deep learning model

Author(s):  
Sharifah Farhana Syed-Ab-Rahman ◽  
Mohammad Hesam Hesamian ◽  
Mukesh Prasad
Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 215
Author(s):  
Gurpreet Singh ◽  
Subhi Al’Aref ◽  
Benjamin Lee ◽  
Jing Lee ◽  
Swee Tan ◽  
...  

Conventional scoring and identification methods for coronary artery calcium (CAC) and aortic calcium (AC) result in information loss from the original image and can be time-consuming. In this study, we sought to demonstrate an end-to-end deep learning model as an alternative to the conventional methods. Scans of 377 patients with no history of coronary artery disease (CAD) were obtained and annotated. A deep learning model was trained, tested and validated in a 60:20:20 split. Within the cohort, mean age was 64.2 ± 9.8 years, and 33% were female. Left anterior descending, right coronary artery, left circumflex, triple vessel, and aortic calcifications were present in 74.87%, 55.82%, 57.41%, 46.03%, and 85.41% of patients respectively. An overall Dice score of 0.952 (interquartile range 0.921, 0.981) was achieved. Stratified by subgroups, there was no difference between male (0.948, interquartile range 0.920, 0.981) and female (0.965, interquartile range 0.933, 0.980) patients (p = 0.350), or, between age <65 (0.950, interquartile range 0.913, 0.981) and age ≥65 (0.957, interquartile range 0.930, 0.9778) (p = 0.742). There was good correlation and agreement for CAC prediction (rho = 0.876, p < 0.001), with a mean difference of 11.2% (p = 0.100). AC correlated well (rho = 0.947, p < 0.001), with a mean difference of 9% (p = 0.070). Automated segmentation took approximately 4 s per patient. Taken together, the deep-end learning model was able to robustly identify vessel-specific CAC and AC with high accuracy, and predict Agatston scores that correlated well with manual annotation, facilitating application into areas of research and clinical importance.


2020 ◽  
Author(s):  
Zicheng Hu ◽  
Alice Tang ◽  
Jaiveer Singh ◽  
Sanchita Bhattacharya ◽  
Atul J. Butte

AbstractCytometry technologies are essential tools for immunology research, providing high-throughput measurements of the immune cells at the single-cell level. Traditional approaches in interpreting and using cytometry measurements include manual or automated gating to identify cell subsets from the cytometry data, providing highly intuitive results but may lead to significant information loss, in that additional details in measured or correlated cell signals might be missed. In this study, we propose and test a deep convolutional neural network for analyzing cytometry data in an end-to-end fashion, allowing a direct association between raw cytometry data and the clinical outcome of interest. Using nine large CyTOF studies from the open-access ImmPort database, we demonstrated that the deep convolutional neural network model can accurately diagnose the latent cytomegalovirus (CMV) in healthy individuals, even when using highly heterogeneous data from different studies. In addition, we developed a permutation-based method for interpreting the deep convolutional neural network model and identified a CD27-CD94+ CD8+ T cell population significantly associated with latent CMV infection. Finally, we provide a tutorial for creating, training and interpreting the tailored deep learning model for cytometry data using Keras and TensorFlow (github.com/hzc363/DeepLearningCyTOF).


2019 ◽  
Vol 9 (20) ◽  
pp. 4431 ◽  
Author(s):  
Jeonghoon Kwak ◽  
Yunsick Sung

Micro unmanned aircraft systems (micro UAS)-related technical research is important because micro UAS has the advantage of being able to perform missions remotely. When an omnidirectional camera is mounted, it captures all surrounding areas of the micro UAS. Normal field of view (NFoV) refers to a view presented as an image to a user in a 360-degree video. The 360-degree video is controlled using an end-to-end controls method to automatically provide the user with NFoVs without the user controlling the 360-degree video. When using the end-to-end controls method that controls 360-degree video, if there are various signals that control the 360-degree video, the training of the deep learning model requires a considerable amount of training data. Therefore, there is a need for a method of autonomously determining the signals to reduce the number of signals for controlling the 360-degree video. This paper proposes a method to autonomously determine the output to be used for end-to-end control-based deep learning model to control 360-degree video for micro UAS controllers. The output of the deep learning model to control 360-degree video is automatically determined using the K-means algorithm. Using a trained deep learning model, the user is presented with NFoVs in a 360-degree video. The proposed method was experimentally verified by providing NFoVs wherein the signals that control the 360-degree video were set by the proposed method and by user definition. The results of training the convolution neural network (CNN) model using the signals to provide NFoVs were compared, and the proposed method provided NFoVs similar to NFoVs of existing user with 24.4% more similarity compared to a user-defined approach.


Author(s):  
Yujin Zhang ◽  
Luo Yu ◽  
Zhijun Fang ◽  
Neal N. Xiong ◽  
Lijun Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document