scholarly journals End-To-End Controls Using K-Means Algorithm for 360-Degree Video Control Method on Omnidirectional Camera-Equipped Autonomous Micro Unmanned Aircraft Systems

2019 ◽  
Vol 9 (20) ◽  
pp. 4431 ◽  
Author(s):  
Jeonghoon Kwak ◽  
Yunsick Sung

Micro unmanned aircraft systems (micro UAS)-related technical research is important because micro UAS has the advantage of being able to perform missions remotely. When an omnidirectional camera is mounted, it captures all surrounding areas of the micro UAS. Normal field of view (NFoV) refers to a view presented as an image to a user in a 360-degree video. The 360-degree video is controlled using an end-to-end controls method to automatically provide the user with NFoVs without the user controlling the 360-degree video. When using the end-to-end controls method that controls 360-degree video, if there are various signals that control the 360-degree video, the training of the deep learning model requires a considerable amount of training data. Therefore, there is a need for a method of autonomously determining the signals to reduce the number of signals for controlling the 360-degree video. This paper proposes a method to autonomously determine the output to be used for end-to-end control-based deep learning model to control 360-degree video for micro UAS controllers. The output of the deep learning model to control 360-degree video is automatically determined using the K-means algorithm. Using a trained deep learning model, the user is presented with NFoVs in a 360-degree video. The proposed method was experimentally verified by providing NFoVs wherein the signals that control the 360-degree video were set by the proposed method and by user definition. The results of training the convolution neural network (CNN) model using the signals to provide NFoVs were compared, and the proposed method provided NFoVs similar to NFoVs of existing user with 24.4% more similarity compared to a user-defined approach.

2021 ◽  
Vol 13 (10) ◽  
pp. 2003
Author(s):  
Daeyong Jin ◽  
Eojin Lee ◽  
Kyonghwan Kwon ◽  
Taeyun Kim

In this study, we used convolutional neural networks (CNNs)—which are well-known deep learning models suitable for image data processing—to estimate the temporal and spatial distribution of chlorophyll-a in a bay. The training data required the construction of a deep learning model acquired from the satellite ocean color and hydrodynamic model. Chlorophyll-a, total suspended sediment (TSS), visibility, and colored dissolved organic matter (CDOM) were extracted from the satellite ocean color data, and water level, currents, temperature, and salinity were generated from the hydrodynamic model. We developed CNN Model I—which estimates the concentration of chlorophyll-a using a 48 × 27 sized overall image—and CNN Model II—which uses a 7 × 7 segmented image. Because the CNN Model II conducts estimation using only data around the points of interest, the quantity of training data is more than 300 times larger than that of CNN Model I. Consequently, it was possible to extract and analyze the inherent patterns in the training data, improving the predictive ability of the deep learning model. The average root mean square error (RMSE), calculated by applying CNN Model II, was 0.191, and when the prediction was good, the coefficient of determination (R2) exceeded 0.91. Finally, we performed a sensitivity analysis, which revealed that CDOM is the most influential variable in estimating the spatiotemporal distribution of chlorophyll-a.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 215
Author(s):  
Gurpreet Singh ◽  
Subhi Al’Aref ◽  
Benjamin Lee ◽  
Jing Lee ◽  
Swee Tan ◽  
...  

Conventional scoring and identification methods for coronary artery calcium (CAC) and aortic calcium (AC) result in information loss from the original image and can be time-consuming. In this study, we sought to demonstrate an end-to-end deep learning model as an alternative to the conventional methods. Scans of 377 patients with no history of coronary artery disease (CAD) were obtained and annotated. A deep learning model was trained, tested and validated in a 60:20:20 split. Within the cohort, mean age was 64.2 ± 9.8 years, and 33% were female. Left anterior descending, right coronary artery, left circumflex, triple vessel, and aortic calcifications were present in 74.87%, 55.82%, 57.41%, 46.03%, and 85.41% of patients respectively. An overall Dice score of 0.952 (interquartile range 0.921, 0.981) was achieved. Stratified by subgroups, there was no difference between male (0.948, interquartile range 0.920, 0.981) and female (0.965, interquartile range 0.933, 0.980) patients (p = 0.350), or, between age <65 (0.950, interquartile range 0.913, 0.981) and age ≥65 (0.957, interquartile range 0.930, 0.9778) (p = 0.742). There was good correlation and agreement for CAC prediction (rho = 0.876, p < 0.001), with a mean difference of 11.2% (p = 0.100). AC correlated well (rho = 0.947, p < 0.001), with a mean difference of 9% (p = 0.070). Automated segmentation took approximately 4 s per patient. Taken together, the deep-end learning model was able to robustly identify vessel-specific CAC and AC with high accuracy, and predict Agatston scores that correlated well with manual annotation, facilitating application into areas of research and clinical importance.


2021 ◽  
Author(s):  
J. Annrose ◽  
N. Herald Anantha Rufus ◽  
C. R. Edwin Selva Rex ◽  
D. Godwin Immanuel

Abstract Bean which is botanically called Phaseolus vulgaris L belongs to the Fabaceae family.During bean disease identification, unnecessary economical losses occur due to the delay of the treatment period, incorrect treatment, and lack of knowledge. The existing deep learning and machine learning techniques met few issues such as high computational complexity, higher cost associated with the training data, more execution time, noise, feature dimensionality, lower accuracy, low speed, etc. To tackle these problems, we have proposed a hybrid deep learning model with an Archimedes optimization algorithm (HDL-AOA) for bean disease classification. In this work, there are five bean classes of which one is a healthy class whereas the remaining four classes indicate different diseases such as Bean halo blight, Pythium diseases, Rhizoctonia root rot, and Anthracnose abnormalities acquired from the Soybean (Large) Data Set.The hybrid deep learning technique is the combination of wavelet packet decomposition (WPD) and long short term memory (LSTM). Initially, the WPD decomposes the input images into four sub-series. For these sub-series, four LSTM networks were developed. During bean disease classification, an Archimedes optimization algorithm (AOA) enhances the classification accuracy for multiple single LSTM networks. MATLAB software implements the HDL-AOA model for bean disease classification. The proposed model accomplishes lower MAPE than other exiting methods. Finally, the proposed HDL-AOA model outperforms excellent classification results using different evaluation measures such as accuracy, specificity, sensitivity, precision, recall, and F-score.


2019 ◽  
Author(s):  
Mojtaba Haghighatlari ◽  
Gaurav Vishwakarma ◽  
Mohammad Atif Faiz Afzal ◽  
Johannes Hachmann

<div><div><div><p>We present a multitask, physics-infused deep learning model to accurately and efficiently predict refractive indices (RIs) of organic molecules, and we apply it to a library of 1.5 million compounds. We show that it outperforms earlier machine learning models by a significant margin, and that incorporating known physics into data-derived models provides valuable guardrails. Using a transfer learning approach, we augment the model to reproduce results consistent with higher-level computational chemistry training data, but with a considerably reduced number of corresponding calculations. Prediction errors of machine learning models are typically smallest for commonly observed target property values, consistent with the distribution of the training data. However, since our goal is to identify candidates with unusually large RI values, we propose a strategy to boost the performance of our model in the remoter areas of the RI distribution: We bias the model with respect to the under-represented classes of molecules that have values in the high-RI regime. By adopting a metric popular in web search engines, we evaluate our effectiveness in ranking top candidates. We confirm that the models developed in this study can reliably predict the RIs of the top 1,000 compounds, and are thus able to capture their ranking. We believe that this is the first study to develop a data-derived model that ensures the reliability of RI predictions by model augmentation in the extrapolation region on such a large scale. These results underscore the tremendous potential of machine learning in facilitating molecular (hyper)screening approaches on a massive scale and in accelerating the discovery of new compounds and materials, such as organic molecules with high-RI for applications in opto-electronics.</p></div></div></div>


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Sunil Kumar Prabhakar ◽  
Dong-Ok Won

To unlock information present in clinical description, automatic medical text classification is highly useful in the arena of natural language processing (NLP). For medical text classification tasks, machine learning techniques seem to be quite effective; however, it requires extensive effort from human side, so that the labeled training data can be created. For clinical and translational research, a huge quantity of detailed patient information, such as disease status, lab tests, medication history, side effects, and treatment outcomes, has been collected in an electronic format, and it serves as a valuable data source for further analysis. Therefore, a huge quantity of detailed patient information is present in the medical text, and it is quite a huge challenge to process it efficiently. In this work, a medical text classification paradigm, using two novel deep learning architectures, is proposed to mitigate the human efforts. The first approach is that a quad channel hybrid long short-term memory (QC-LSTM) deep learning model is implemented utilizing four channels, and the second approach is that a hybrid bidirectional gated recurrent unit (BiGRU) deep learning model with multihead attention is developed and implemented successfully. The proposed methodology is validated on two medical text datasets, and a comprehensive analysis is conducted. The best results in terms of classification accuracy of 96.72% is obtained with the proposed QC-LSTM deep learning model, and a classification accuracy of 95.76% is obtained with the proposed hybrid BiGRU deep learning model.


2021 ◽  
Author(s):  
J. Annrose ◽  
N. Herald Anantha Rufus ◽  
C. R. Edwin Selva Rex ◽  
D. Godwin Immanuel

Abstract Bean which is botanically called Phaseolus vulgaris L belongs to the Fabaceae family.During bean disease identification, unnecessary economical losses occur due to the delay of the treatment period, incorrect treatment, and lack of knowledge. The existing deep learning and machine learning techniques met few issues such as high computational complexity, higher cost associated with the training data, more execution time, noise, feature dimensionality, lower accuracy, low speed, etc. To tackle these problems, we have proposed a hybrid deep learning model with an Archimedes optimization algorithm (HDL-AOA) for bean disease classification. In this work, there are five bean classes of which one is a healthy class whereas the remaining four classes indicate different diseases such as Bean halo blight, Pythium diseases, Rhizoctonia root rot, and Anthracnose abnormalities acquired from the Soybean (Large) Data Set.The hybrid deep learning technique is the combination of wavelet packet decomposition (WPD) and long short term memory (LSTM). Initially, the WPD decomposes the input images into four sub-series. For these sub-series, four LSTM networks were developed. During bean disease classification, an Archimedes optimization algorithm (AOA) enhances the classification accuracy for multiple single LSTM networks. MATLAB software implements the HDL-AOA model for bean disease classification. The proposed model accomplishes lower MAPE than other exiting methods. Finally, the proposed HDL-AOA model outperforms excellent classification results using different evaluation measures such as accuracy, specificity, sensitivity, precision, recall, and F-score.


Sign in / Sign up

Export Citation Format

Share Document